京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分类:基本概念、决策树与模型评估 分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y. 一、预备知识 分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象. 预测性建模:分类模型还可以用于预测未知记录的类标号. 二.解决分类问题的一般方法 分类法的例子包括决策树法、基于规则的分类法、神经网络、支持向量机和朴素贝叶斯分类法。 分类模型的性能根据模型正确和错误预测的检验记录计数进行评估,这些计数存放在称作混淆矩阵的表格中。准确性=正确预测数/预测总数。 差错率:错误预测数/预测总数。 三。决策树归纳 1。决策树工作原理 树中包换三种结点: 根结点:它没有入边,但有零条或多条出边。 内部结点:恰有一条入边和两条或多条出边。 叶结点:恰有一条入边,但没有出边。 其中,每个叶结点都赋予一个类标号,非终结点(包括根结点和内部结点)包含属性测试条件,用以分开具有不同特性的记录。一旦构造了决
策树,对检验记录进行分类就是直截了当的,从树的根结点出发,将测试条件用于检验记录,根据测试结果选择适当的分支,沿着该分支或者
达到另一个内部结点,使用新的测试条件或者达到一个叶结点,叶结点的类称号就被赋值给该检验记录。 2。如何建立决策树 对于给定的属性集,可以构造的决策树数目达指数级,找出最佳的决策树在计算上是不可行的,所以通常采用贪心算法,采取一系列局部最优
决策来构造决策树。Hunt算法就是其中一种。 *Hunt算法 Hunt算法通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。 决策树归纳设计问题必须解决以下两个问题:如何分裂训练记录和如何停止分裂过程。 3。表示属性测试条件的方法 二元属性:二元属性的测试条件产生两个可能的输出。 标称属性:由于标称有多个属性值,它的测试条件可以用两种方法表示,多路划分和二元划分(如:CART方法) 充数属性:也可以产生二元或多路划分。 连续属性:测试条件可以具有二元输出的比较测试(A<v)或(A>=v),也可以是具有形如:vi<=A<vi+1来划分输出的范围查询。 4。选择最佳划分的度量 为了确定测试条件的效果,需要比较父结点(划分前)的不纯程度和子女结点(划分后)的不纯程度,它们的差越大,测试条件的效果就越好
。 5。决策树归纳的特点: *决策树归纳是一种构建分类模型的非参数方法。 *找到最佳的决策树是NP完全问题。 *已开发的构建决策树技术不需要昂贵的计算代价。 *决策树相对容易解释,特别是小型的决策树。 *决策树是学习离散值函数的典型代表。 *决策树对于噪声有良好的鲁棒性。 *冗余属性不会对决策的准确率造成不利的影响。 *存在着数据碎片的问题。 *子树可能在决策树中重复多次。 四。模型的过分拟合 分类模型的误差大致分为两种:训练误差和泛化误差。一个好的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类
。然而,对训练集数据拟合太好的模型,其泛化误差可能比具有较高训练误差的模型高,这就是所谓的模型过分拟合。 1。噪声导致的过分拟合 也就是训练集中有被错误分类的记录。 2。缺乏代表性样本导致的过分拟合 3。过分拟合与多重比较过程 要增加一个属性测试条件,是从候选的属性集中挑一个使得增益大于某个阈值的一个属性,这样算法就会在模型上增加一些欺骗性的结点,导
致过分拟合。 4。泛化误差估计 *使用再代入估计:假设训练数据集可以很好的代表整体数据,因而可以使用训练误差提供对泛化误差的乐观估计。 *结合模型复杂度:如前所述,模型越是复杂,出现过分拟合的几率就越高,因此我们更喜欢较为简单的模型。这种策略与Occam剃刀或节俭原
则一致,Occam剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。 五。评估分类器的性能 1。保持方法:将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集,在训练集上归纳分类模型,在检验集上评估模型的性
能。 2。随机二次抽样:可以多次重复保持方法来改进对分类器性能的估计。 3。交叉验证:每个记录用于训练的次数相同,并且用于检验恰好一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12