京公网安备 11010802034615号
经营许可证编号:京B2-20210330
写好一份数据分析报告需要注意的13个要点
先说说写一份好的数据分析报告的重要性,很简单,因为分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。
我认为一份好的分析报告,有以下一些要点:
首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;
第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;
第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的 了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;
第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;
第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因 为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站 在读者的角度去写分析邮件;
第六,数据分析报告尽量图表化,这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;
第七、好的分析报告一定要有逻辑性,通常要遵照:1、发现问题--2、总结问题原因--3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受;
第八、好的分析一定是出自于了解产品的基础上的,做数据分析的产品经理本身一定要非常了解你所分析的产品的,如果你连分析的对象基本特性都不了解,分析出来的结论肯定是空中楼阁了,无根之木如何叫人信服?!
第九、好的分析一定要基于可靠的数据源,其实很多时候收集数据会占据更多的时间,包括规划定义数据、协调数据上报、让开发人员 提取正确的数据或者建立良好的数据体系平台,最后才在收集的正确数据基础上做分析,既然一切都是为了找到正确的结论,那么就要保证收集到的数据的正确性, 否则一切都将变成为了误导别人的努力;
第十、好的分析报告一定要有解决方案和建议方案,你既然很努力地去了解了产品并在了解的基础上做了深入的分析,那么这个过程就决定了你可能比别人都更清楚 第发现了问题及问题产生的原因,那么在这个基础之上基于你的知识和了解,做出的建议和结论想必也会更有意义,而且你的老板也肯定不希望你只是个会发现问题 的人,请你的那份工资更多的是为了让你解决问题的;
十一、不要害怕或回避“不良结论”,分析就是为了发现问题,并为解决问题提供决策依据的,发现产品问题也是你的价值所在,相信你的老板请你来,不是光让你 来唱赞歌的,他要的也不是一个粉饰太平的工具,发现产品问题,在产品缺陷和问题造成重大失误前解决它就是你的分析的价值所在了;
十二、不要创造太多难懂的名词,如果你的老板在看你的分析花10分钟要叫你三次过去来解释名词,那么你写出来的价值又在哪里呢,还不如你直接过去说算了,当然如果无可避免地要写一些名词,最好要有让人易懂的“名词解释”;
十三、最后,要感谢那些为你的这份分析报告付出努力做出贡献的人,包括那些为你上报或提取数据的人,那些为产品作出支 持和帮助的人(如果分析的是你自己负责的产品),肯定和尊重伙伴们的工作才会赢得更多的支持和帮助,而且我想你也不是只做一锤子买卖,懂得感谢和分享成果 的人才能成为一个有素养和受人尊敬的产品经理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04