
新知新觉:以法治保障人工智能健康发展
当今时代,人工智能日益深刻地影响着人类生活,帮助人类提高工作效率。其中,设计科学的算法、用好大数据资源、不断提高计算能力是人工智能技术发展的重要支点。然而,技术发展总是与风险相伴,人工智能也可能带来侵犯个人隐私、冲击法律与社会伦理等问题。在充分发挥人工智能作用的同时有效防范其风险,需要运用法治思维和法治方式,加强对算法设计和数据运用的监督管理,推动人工智能行业健康成长,更好为经济社会发展服务。
对算法设计进行监管。人工智能是人类智慧的延伸,算法设计也不是纯粹的技术问题。所有算法都是为完成特定任务、实现特定目的而设计的,特定任务、特定目的的实现路径往往蕴含着设计者的价值观。而设计者的价值观又会影响其设计的技术方案,这就可能在技术运用中产生所谓的算法歧视。比如,某网络公司推出的广告服务中,男性用户能够比女性用户看到更多高薪招聘广告。即使算法设计者没有给算法植入歧视的意图,但有时仍然会出现某种歧视效果。因此,编制算法应当遵循一定的法律规则和行业规则,以合理控制路径选择,使其符合社会基本伦理规范。
对算法设计进行监管,可以采用专业监督和社会监督等手段。专业监督就是对算法设计制定具有可操作性的技术和行业规范,让设计者在进行设计之前就受到有效制约。还可以请同行专家进行监督。同行专家比较容易洞悉设计者的理念,能够了解具体的操作程序。通过同行专家的评价和信息披露,可以对设计者设计出来的算法进行比较有效的事后规制。社会监督就是要求设计者将其算法设计的基本情况进行登记或备案,并且这种登记或备案信息可供社会公众查询,形成社会公众评判,从而进行道德和舆论上的制约。通过专业监督和社会监督,可以更好地防范人工智能算法设计偏离社会基本伦理规范。
对数据运用进行监管。数据的获得和利用方式是法律关注的问题。当用户流连于网络、享受人工智能设备带来的便利时,其个人信息安全可能正面临风险。例如,人们使用智能设备,往往要同意所谓的注册协议、服务协议,这些协议通常会要求用户“自愿”提供个人基本信息。企业在获得用户形式上的授权后,服务过程中涉及的个人数据就会按照约定通过网络传送给企业。比如,可以上传用户的位置、兴趣、需求、使用习惯等信息。获得这些数据的企业,可以据此形成消费者分析报告,针对用户的年龄、居住区域、消费习惯差异等,准确把握用户偏好,进行精准的市场投放。因此,数据运用可以给企业带来巨大利益。
由于互联网海量存储和快速传播的特点,获取、存储和利用个人信息的主体和环节众多,其中往往存在侵犯用户隐私安全和滥用数据的风险。面对这些风险,法律应当确立相应规范,对企业使用个人信息进行限制,使得对个人信息的保护更为详实、充分。例如,允许智能设备出于便捷服务的需要收集个人信息,但不能要求用户作出概括性授权。企业应以正当的、法定的、特定的目的,在特定范围内收集个人信息,并用于特定用途,而不能随意超越用户对其个人信息收集、使用的授权范围。应禁止企业向用户收集与服务无关的信息。服务提供商违反个人信息保护义务的,应当依法承担法律责任。总之,面对人工智能领域可能出现的风险,我们应认真研究思考并作出法律上的应对,为新技术发展设计好法治框架,让人工智能更好地造福人类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28