京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大白话讲解数据挖掘【案例】潜客模型的数据框架
本篇文章作为回答很多朋友问我的一个问题:到底数据挖掘是什么?有什么作用?
我把数据挖掘比喻成炒菜烧饭。下面用了一个潜客模型的框架作为案例进行讲解。
(潜客模型数据挖掘框架)
因为我在互联网公司,所以流量是整个流程图的开始。
第一步:数据准备(去菜场买食材,到家清洗食材)
第二步:做模型(将食材加工成各类食物,咸味、甜味、淡味)
第三步:数据CRM系统营销管理(把不同的食物分给不同的人吃)
第四步:做评估(反馈不同人群对菜的评价,反馈给厨师,厨师根据反馈再做改进)
可以看到数据挖掘非常类似厨师的工作。我们来细细得看一下每一步大概要考虑什么问题?如何去解决吧?
第一步:数据准备
问题:
1、怎么收集用户信息? (去哪里买食材)
收集用户信息可以是非常多的形式,但我们不可能无限制得到用户信息,那是非常浪费资源并且也会让用户认为我们不友好。(就比如你在上海不会飞去北京买烤鸭吧?)所以使用哪些用户信息这个问题就非常关键。
2、应该使用哪些用户信息? (买哪些食材)
通常我们会把所有的一些字段都罗列出来(附近菜场能买到的食材全部记录下来),然后用于模型软件和建模专家去评估哪些字段是有用的(去看哪些能做出菜品的),哪些字段可能对于模型没有任何作用。目前较为流行的就是用户的交互信息,因为这些信息最不易作假,来源也最方便。
第二步:做模型
问题:如何建模?(如何烧菜)
建模其实就是将你手中的信息量折合成你需要的信息。(把几个食材加工后变成红烧肉)。比如要预测这个用户是否要流失,你可以用最近用户的交易习惯是否有巨大的改变,这时我们做模型可能只需要几个关键变量(食材)。从原来的几百个关键变量到最后的几个关键变量,然后把他们组合起来这一个过程就是建模的过程。(选食材到做出美味的美食的过程)
做模型其实是一件非常耗费时间的事情,因为在没有专业化软件的时候,大家做模型就是靠业务经验及一遍遍的数据组合去完成的。而现在专业化的工具如R,SAS,SPSS等其实是提高了建模师的工作效率,让他们繁琐且重复化的工作由计算机完成。当然在你使用这些软件的同时,你必须了解每一种数学模型背后的原理,这样你才明白什么时候用什么模型。(数学模型就好像油盐酱醋,要知道什么时候用什么,最终才能做出美味)
做完模型后,有时你需要把你的模型解释给业务部门听,然后告诉他们如何使用你的模型,因为帮助解决问题才是模型的最终目标。
第三步:数据CRM系统营销管理
当我们把每个顾客的菜做好了,我们需要对不同的顾客满足不同的需求,这时就用到了CRM系统,如下图所示,可以根据模型进行营销,检测最后是否解决了业务问题。
CRM具有以下优势:
1、在营销之前你就可以预算营销成本。
2、针对不同用户使用不同的营销策略(常说的精确化营销)
3、易于检测营销和模型结果
第四步:结果反馈及模型优化
重要结果反馈KPI:(只例举部分)
正向反馈:1、用户再次访问客户端或网站的概率
2、用户上线下单购买产品概率
反向反馈:1、退订率(E-mail APP)
2、投诉率
3、未响应度(未采取任何动作)
根据不同类型的人群进行的反馈结果再次检验模型(顾客的口味评价),查看模型的准确度是否在可控范围内。很多模型随着时间推移都会变得不准确,需要调整一定的阀值。比如银行的风控模型,通常都会半年到1年调整一次(厨师根据顾客喜好调整口味)。其中的原因可能是经济条件增长原因,也可以能是银行政策原因导致。
总结项目关键点:
1、 收集用户的信息质量(业务及BI部门合作)
2、 算法优化处理(建模工程师)
3、 系统实施跟进(BI及IT开发部门合作)
这些因素决定模型应用的成败。
PS:数据挖掘有很多有意思的应用,典型的亚马逊推荐算法;啤酒与尿布;预测;语音识别的原理中也有概率数据挖掘的影子(推荐阅读《数学之美》)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12