
大白话讲解数据挖掘【案例】潜客模型的数据框架
本篇文章作为回答很多朋友问我的一个问题:到底数据挖掘是什么?有什么作用?
我把数据挖掘比喻成炒菜烧饭。下面用了一个潜客模型的框架作为案例进行讲解。
(潜客模型数据挖掘框架)
因为我在互联网公司,所以流量是整个流程图的开始。
第一步:数据准备(去菜场买食材,到家清洗食材)
第二步:做模型(将食材加工成各类食物,咸味、甜味、淡味)
第三步:数据CRM系统营销管理(把不同的食物分给不同的人吃)
第四步:做评估(反馈不同人群对菜的评价,反馈给厨师,厨师根据反馈再做改进)
可以看到数据挖掘非常类似厨师的工作。我们来细细得看一下每一步大概要考虑什么问题?如何去解决吧?
第一步:数据准备
问题:
1、怎么收集用户信息? (去哪里买食材)
收集用户信息可以是非常多的形式,但我们不可能无限制得到用户信息,那是非常浪费资源并且也会让用户认为我们不友好。(就比如你在上海不会飞去北京买烤鸭吧?)所以使用哪些用户信息这个问题就非常关键。
2、应该使用哪些用户信息? (买哪些食材)
通常我们会把所有的一些字段都罗列出来(附近菜场能买到的食材全部记录下来),然后用于模型软件和建模专家去评估哪些字段是有用的(去看哪些能做出菜品的),哪些字段可能对于模型没有任何作用。目前较为流行的就是用户的交互信息,因为这些信息最不易作假,来源也最方便。
第二步:做模型
问题:如何建模?(如何烧菜)
建模其实就是将你手中的信息量折合成你需要的信息。(把几个食材加工后变成红烧肉)。比如要预测这个用户是否要流失,你可以用最近用户的交易习惯是否有巨大的改变,这时我们做模型可能只需要几个关键变量(食材)。从原来的几百个关键变量到最后的几个关键变量,然后把他们组合起来这一个过程就是建模的过程。(选食材到做出美味的美食的过程)
做模型其实是一件非常耗费时间的事情,因为在没有专业化软件的时候,大家做模型就是靠业务经验及一遍遍的数据组合去完成的。而现在专业化的工具如R,SAS,SPSS等其实是提高了建模师的工作效率,让他们繁琐且重复化的工作由计算机完成。当然在你使用这些软件的同时,你必须了解每一种数学模型背后的原理,这样你才明白什么时候用什么模型。(数学模型就好像油盐酱醋,要知道什么时候用什么,最终才能做出美味)
做完模型后,有时你需要把你的模型解释给业务部门听,然后告诉他们如何使用你的模型,因为帮助解决问题才是模型的最终目标。
第三步:数据CRM系统营销管理
当我们把每个顾客的菜做好了,我们需要对不同的顾客满足不同的需求,这时就用到了CRM系统,如下图所示,可以根据模型进行营销,检测最后是否解决了业务问题。
CRM具有以下优势:
1、在营销之前你就可以预算营销成本。
2、针对不同用户使用不同的营销策略(常说的精确化营销)
3、易于检测营销和模型结果
第四步:结果反馈及模型优化
重要结果反馈KPI:(只例举部分)
正向反馈:1、用户再次访问客户端或网站的概率
2、用户上线下单购买产品概率
反向反馈:1、退订率(E-mail APP)
2、投诉率
3、未响应度(未采取任何动作)
根据不同类型的人群进行的反馈结果再次检验模型(顾客的口味评价),查看模型的准确度是否在可控范围内。很多模型随着时间推移都会变得不准确,需要调整一定的阀值。比如银行的风控模型,通常都会半年到1年调整一次(厨师根据顾客喜好调整口味)。其中的原因可能是经济条件增长原因,也可以能是银行政策原因导致。
总结项目关键点:
1、 收集用户的信息质量(业务及BI部门合作)
2、 算法优化处理(建模工程师)
3、 系统实施跟进(BI及IT开发部门合作)
这些因素决定模型应用的成败。
PS:数据挖掘有很多有意思的应用,典型的亚马逊推荐算法;啤酒与尿布;预测;语音识别的原理中也有概率数据挖掘的影子(推荐阅读《数学之美》)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16