
互联网之道,看电商的数据化管理方案
关于数据化管理。我们可以将该模块的数据工作分成两个部分,一是通过数据来辅助日常工作,让日常工作中的选择判断更加规范,这是用数据来做事的。另一个是通过数据来评价工作业绩,让针对相关工作的管理更加规范,这是用数据来管理的。我们先看做事的,商品在零售电商企业中一般都走过下面的几个过程:
商品从采购开始到最终卖出去,按照商品的流程走下去,但是商品的售卖情况、退货情况又反过来影响商品的采购选择。在每个节点是有不同的事情要做(运输这个节点,很多情况运输是由供应商来负责的,所以可能零售商没什么事需要做),本篇先针对采购这一个模块来讨论。
关于采购所要做的事:
选择商品品类、规划品类结构,对于大部分企业来说,商品品类的选择直接决定了企业的零售战略了,并不需要在采购这一阶段来决定。
选择品类中的商品品牌,这个是采购决策中重要的一部分,这个工作也可以拆分成两个内容,引进品牌与淘汰品牌。
选择供应商,同一个品牌也可能会有多个渠道经销商,选择合适的供应商也是采购的重点工作。
而我们如何通过数据来让以上的工作变的更容易,下面我举两个例子。
选择商品品牌,一个是引进一个是淘汰:如果理论上看,引进一个商品品牌需要考虑该品牌的熟悉度、质量、消费者购买欲、品牌预期和独特性等等之后进行判断,但上述内容很难量化,判断参考难度大。而其实,上面的几项总之是可以通过销售情况来体现一下,可以通过商品的销售情况来判断该商品是否值得引进。
上图做了个简单的举例,我们通过另一个参考的数据集来寻找销售情况较好的商品,通过查看商品的毛利率、销量等信息来判断这个商品是否值得引进。根据实际的情况,该表可以有更多的变化,不同的对比集、不同的业态可以有更多的指标来判断,这个图只提供一个简单的思路。(不要问我对比集数据怎么获取,可选择的对比集很多,数据获取的方法也很多)
除了引进好的商品外,也需要剔除掉垃圾品牌,这一块就更简单了,选择品类拉出改品类中各品牌商品的库存、销售情况,计算库存可维持销售天数,就可以得出商品的畅滞销情况,并依此判断商品是否需要剔除。
或许有人会说,不同商品不能在一起比较,有的品牌月售1件就厉害了,有的卖10件也是滞销,这样做考虑不全面。我要说的是,人来用来干嘛呢,一共10步路程,数据完成7步,剩下的还是交给人。数据可以让人们的判断有更全面的依据,做出更合理的判断,而不是直接做出判断结果。我信一句话:如果你想把事情做到完美,那么多半是做不成的。这里做数据分析也是一样,平衡好数据和人的关系,对数据也不要想太多。
在完成品牌的选择之后,可能面临着供应商的选择,点击品名来直接调出该商品的供应商信息,列出供应商相关的指标数据,例如批次进价、售价、库存、销售额、到货及时率等。
上面介绍完关于采购日常工作中的数据应用,我们再来看管理。
管理的目的,是通过对一段时间工作业绩的回顾和分析,发现过程中的问题,促使相关的责任人更好的做事。其方式也一般是对采购相关指标进行展示,或者是根据指标数据进行排名、对比,以此来驱动相关负责人更好的完成工作。更复杂点的也就是整体到个体到节点的全面监控,通过数据的可视化展示,来达到更直观的体现效果。
针对采购模块,我们可以将指标分成两部分,一是过程指标,二是结果指标。
过程指标:采购频率、采购费用、扩展供应商数量、新品引进率、商品淘汰率、新品到位率、采购品牌匹配度、价格匹配度、型号匹配度。
结果指标:采购商品销售额、采购商品gmroi、商品毛利率、销售存货比率、商品采销率。。
通过上面我们看出,体现采购价值的结果指标,都是需要从商品的销售结果中来体现。所以商品分析可以作为一个综合的模块,所有的目的都是为了商品卖的更好,带来更高的利润,无论是采购、库存、销售都是为了这一目标,所以我这里也不针对单独的采购模块做报表demo了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18