
机器学习模型评价指标及R实现
1.ROC曲线
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被
预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False
positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false
negative)。
列联表如下表所示,1代表正类,0代表负类。
真正类率(true positive rate ,TPR), 也称为 Sensitivity,计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。
假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。
真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1 - FPR。 在一个二分类模型中,对于所得到的连续结果,假设已确定一个阈值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阈值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。
ROC曲线正是由两个变量1-specificity(x轴) 和 Sensitivity(y轴)绘制的,其中1-specificity为FPR,Sensitivity为TPR。随着阈值的改变,就能得到每个阈值所对应的1-specificity和Sensitivity,最后绘制成图像。
该图像的面积如果越接近1,那么我们则认为该分类器效果越好。从直觉上来说,假设我们的预测全部100%正确,那么不管阈值怎么变(除了阈值等于0和1时),我们的Sensitivity(真正类)率永远等于1,1-specificity(1-真负类率)永远等于0,所以该图就是个正方形,面积为1,效果最好。
样例数据集:
library(ROCR)
data(ROCR.simple)
ROCR.simple<-as.data.frame(ROCR.simple)
head(ROCR.simple)
# predictions labels
# 1 0.6125478 1
# 2 0.3642710 1
# 3 0.4321361 0
# 4 0.1402911 0
# 5 0.3848959 0
# 6 0.2444155 1
绘制ROC图:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf,colorize=TRUE)
2.AUC值
AUC值就是ROC曲线下的面积,可以通过以下代码计算:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
auc.tmp <- performance(pred,"auc")
auc <- as.numeric(auc.tmp@y.values)
3.Recall-Precision(PR)曲线
同样是一个二分类的模型的列联表,我们可以定义:
然后我们通过计算不同的阈值,以Recall为X轴,Precision为Y轴绘制图像。
PR图可以有这样的应用,引用一个例子[1]:
1. 地震的预测
对于地震的预测,我们希望的是RECALL非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲PRECISION。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次对了8次漏了两次。
2. 嫌疑人定罪
基于不错怪一个好人的原则,对于嫌疑人的定罪我们希望是非常准确的。及时有时候放过了一些罪犯(recall低),但也是值得的。
对于分类器来说,本质上是给一个概率,此时,我们再选择一个CUTOFF点(阀值),高于这个点的判正,低于的判负。那么这个点的选择就需要结合你的具体场景去选择。反过来,场景会决定训练模型时的标准,比如第一个场景中,我们就只看RECALL=99.9999%(地震全中)时的PRECISION,其他指标就变得没有了意义。
绘制代码:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
RP.perf <- performance(pred, "prec", "rec")
plot (RP.perf)
#查看阈值为0.1,0.5,0.9下的召回率和精确率
plot(RP.perf, colorize=T, colorkey.pos="top",
print.cutoffs.at=c(0.1,0.5,0.9), text.cex=1,
text.adj=c(1.2, 1.2), lwd=2)
一般这曲线越靠上,则认为模型越好。对于这个曲线的评价,我们可以使用F分数来描述它。就像ROC使用AUC来描述一样。
4.F1分数
Fβ
分数定义如下:
我们可以使用R计算F1分数:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
f.perf <- performance(pred, "f")
plot(f.perf) #横坐标为阈值的取值
5.均方根误差RMSE
回归模型中最常用的评价模型便是RMSE(root mean square error,平方根误差),其又被称为RMSD(root mean square deviation),其定义如下:
其中,yi是第i个样本的真实值,y^i是第i个样本的预测值,n是样本的个数。该评价指标使用的便是欧式距离。
RMSE虽然广为使用,但是其存在一些缺点,因为它是使用平均误差,而平均值对异常点(outliers)较敏感,如果回归器对某个点的回归值很不理性,那么它的误差则较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。 所以有的时候我们会先剔除掉异常值,然后再计算RMSE。
R语言中RMSE计算代码如下:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
rmse.tmp<-performance(pred, "rmse")
rmse<-rmse.tmp@y.values
6.SAR
SAR是一个结合了各类评价指标,想要使得评价更具有鲁棒性的指标。(cf. Caruana R., ROCAI2004):
其中准确率(Accuracy)是指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
sar.perf<-performance(pred, "sar")
7.多分类的AUC[5]
将二类 AUC 方法直接扩展到多类分类评估中, 存在表述空间维数高、复杂性大的问题。 一般采用将多类分类转成多个二类分类的思想, 用二类 AUC 方法来评估多类分类器的性能。Fawcett 根据这种思想提出了 F- AUC 方法[4], 该评估模型如下
其中AUC(i,rest)是计算 用 ” 1- a- r”方 法 得 到 的 每 个 二 类 分 类器的 AUC 值,“ 1- a- r”方法思想是 k 类分类问题构造 k 个二类分类器, 第 i 个二类分类器中用第 i 类的训练样本作为正例, 其他所有样本作为负例。 p ( i) 是计算每个类在所有样本中占有的比例,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11