
数据治理的应用指南
数据治理(有时也称为IT治理)是存储管理的关键部分。显然,IT治理总体上与数据治理密切相关:IT是任何数据治理项目的组成部分。
数据治理是使组织能够正式管理其数据资产的策略、过程、人员和技术的框架。前端规划是实现组织治理的关键,这涉及到多个利益相关方,并对人员和流程产生广泛的影响。
数据治理和9个子域
大多数组织都是为了应对严重的威胁而启动其数据治理举措。常见的高级威胁包括代价高昂的违规行为、安全漏洞、诉讼、无法运行分析,以及发现暗数据的高成本。
全面的数据治理涉及9个不同的子域。每个子域都需要花费大量时间和资源来实现治理,但很少有组织需要这样做。没有一个组织会同时尝试去做这些事情。
构建整体数据治理
?评估和框架。全面的治理始于建立主要治理框架的意愿,而其意愿来自企业的高级执行理事会。该理事会与IT部门和业务部门主管一起工作,确定重要系统面临风险的流程。正式评估分析当前的治理措施,建议治理项目,并确定优先顺序。理事会和合作伙伴系统地将项目及其重要性传达给员工。
?政策和技术。治理团队从评估报告中优先考虑项目。主要考虑因素应该是降低数据安全性和不合规性的风险,以节省高效的数据流程成本,并从以前不可见的数据中获取重要的商业智能。项目团队通常与顾问和外包商合作,规划每个项目及其附带的工具、技术和培训。
?监督和路线图。企业在一夜之间无法实现全面治理。在考虑治理举措时,每个组织都需要平衡风险与资源。如果任务或业务关键型域名对信誉、数据丢失或合规性构成高风险,则建立治理是值得的。一旦治理的努力在一个领域中实现,将其扩展到其他领域变得更加简单。根据需要在其他领域建立治理项目路线图。对于企业建立数据治理的领域,每1-3年进行一次评估审查。
业务用例用于数据治理
合规是治理举措的共同驱动因素。医疗和金融服务这两个受高度监管的行业尤其需要参与治理举措,以保持合规性。
(1)医疗保健
医疗保健的优先治理项目之一是遵守HIPAA,该规定管理美国医疗行业如何收集、存储、传达和传输受保护的健康信息。由于法规几乎影响到与医疗相关的每个IT领域,因此符合HIPAA规范涵盖了一系列数据活动。
随着更多医疗信息的数字化,管理EPHI的重要性也在增长。HIPAA要求认真处理电子记录,包括EPHI数据的安全备份和恢复、经常验证的备份、传输和静止时的加密、备份到安全的远程站点,并记录所有策略和过程。
(2)金融服务业
金融机构受到多项国家和国家法规的约束。美国的主要法规包括保护个人财务信息的GLBA,通过规范公司披露保护投资者的SOX,用于业务连续性和DR计划的FINRA,以及用于安全证券交易的SEC。
此外,纽约州通过了一套全面的网络安全条例,称为NYCRR,适用于所有受该州银行、保险和金融服务法律约束的企业。其他州可能会效仿。
金融公司在试图将他们的治理项目与监管要求相匹配时面临着真正的挑战。这些公司面临的常见障碍包括员工失误、不安全的笔记本电脑和移动设备、不合规的云计算服务提供商,以及过时或隐晦的法规。但是像HIPAA一样,机构调查人员将会对一个毫无准备和不合规的金融服务公司进行审查。
数据治理的好处
企业从内部和外部受益于数据治理。内部治理通过高效一致的程序取代低效的流程,节省了时间。外部治理使组织保持合规,并使企业能够通过高效可靠的流程提高其商业信誉。
有效的流程和训练有素的员工可以节省时间和成本,并降低风险。
数据可视性和管理使组织能够遵守法规和行业最佳实践。如果有调查,企业可以快速提供可验证的结果。
整个企业的标准化数据管理改善了信息共享和协作。
集中数据仓库或大数据池中的业务数据可实现分析和商业智能,即使是非结构化数据。
收入随着更有效的流程而增加,并有能力采取新的业务洞察。
数据治理是一个大项目,实际上是一系列大项目。即便如此,任何公司和IT组织都有可能进行数据治理,这些组织将致力于改进生产力,增加收入,并降低风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10