京公网安备 11010802034615号
经营许可证编号:京B2-20210330
改善企业业务的6个数据管理技巧
无论人们处在什么样的行业领域,都有机会获得重要的数据。而企业从根本上改变其业务方式,诀窍是找出最佳使用方法。
C&W Services公司首席信息官Salumeh
Companieh表示,其IT团队为该公司的15000位员工交付和采用技术,并负责确保提供的技术部署符合组织目标和行业最佳实践。随着该公司的每个部门都定义其年度目标,并通过无缝地编织技术,向员工提供关于如何在流程和分析中改善业务的选项。

对于许多组织来说,转变业务需求和预算现实意味着技术部署必须既有战略性又有敏捷性。C&W
Services公司专注于使用技术改进业务流程。许多组织的大量数据存在于独立应用程序中,处于闲置状态并等待被利用。而寻找一种分析应用程序间数据的方法有可能提高效率。
数据提供了有意义和有价值的见解,使人们具备了技术决策能力
在以下的数据分析之旅中,将提供六项数据管理技巧,可帮助组织从只是谈论关键指标转变为针对战略决策数据采取行动。在应用中,还可以帮助找到组织内可操作数据的快捷方式。
(1)从企业的数据模型开始
组织很有可能为其支持的功能提供了多个有针对性的最佳应用程序。但是,如果将这些信息存储在不同的系统中,那么其信息的价值是什么?要开始实施数据管理过程,重要的是要在企业内的所有应用程序中调整数据模型,以便跨系统进行数据关联。数据可视化可以显着改善企业内部的决策。但是,源数据清理和排列是第一个关键步骤,人们对此不应低估。
(2)实施数据管理流程
在排好了数据模型之后,保持其组织性很重要。企业建立一个流程或系统来维护源事务和主数据。适当的数据管理将使企业能够构建其数据模型,并随时增强现有分析。由于糟糕的数据管理实践,很容易让人对数据分析或技术部署丧失信心。
(3)进行可视化计数
设置数据可视化时,请牢记最终目标。企业确保自己对仪表板的行为变化有充分的了解,并确保自己已与其关键业务利益相关者进行合作。例如,在设施管理中,数据可以成为预测性维护中的游戏改变者。在行业中,了解维护事件的主要指标以及通过大量数据输入可视化数据,可以帮助维护团队主动改进维护流程,从而延长机器或物理资产的使用寿命。相关人员需要考虑数据可视化如何为其业务带来类似的流程改进。
(4)了解数据所有权在哪里
一旦开始清理数据的过程,将数据模型的各个部分拼凑在一起,就会自然地进行数据所有权问题的对话。作为一个组织,企业需要定期就仪表板的所有权及其所描绘的数据进行对话。其技术同行不拥有这些数据,也没有建立关于数据的指标。当其组织从一个捕获但不真正依赖数据的组织转换为需要主数据和事务数据完全透明的数据时,数据质量和度量标准定义的所有权是增长和流程采用中的关键成功因素。
(5)建立自己的交付引擎
组织可以引入可视化技术,虽然一开始可能并不确切地知道其作用,但一旦采用,管理人员和员工之间的想法就会蓬勃发展,并且请求管道将会快速增长。过早释放这些功能可能会导致一些错误的启动。而在将可视化引入组织之前,需要确保已经构建了引擎,建立一个入口过程,开发了优先级机制,并考虑了所有安全隐患。
(6)授权和培训企业的业务合作伙伴
可视化应该是真正的伙伴关系,IT不应该是唯一主导的事物。企业需要构建自己的自助服务引擎。确定其团队应该在何时运行,并确定与技术团队的合作,以及IT如何提供指导和支持。可以确定最接近流程的人员需求,并在技术团队中以“等待时间”来填补需求。
“大数据”这个词已经引起了很多人的关注,但随着大数据的概念发生波动以适应瞬息万变的市场,人们将在未来几年越来越了解大数据。在企业中,数据提供了有意义且有价值的见解,使人们掌握了能够简化效率、跟踪安全数据,并提高客户满意度的技术决策能力。当正确管理和使用数据时,数据可能是拥有洞察力的关键,这种洞察力可让企业提升新的高度或获得更多的利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27