京公网安备 11010802034615号
经营许可证编号:京B2-20210330
改善企业业务的6个数据管理技巧
无论人们处在什么样的行业领域,都有机会获得重要的数据。而企业从根本上改变其业务方式,诀窍是找出最佳使用方法。
C&W Services公司首席信息官Salumeh
Companieh表示,其IT团队为该公司的15000位员工交付和采用技术,并负责确保提供的技术部署符合组织目标和行业最佳实践。随着该公司的每个部门都定义其年度目标,并通过无缝地编织技术,向员工提供关于如何在流程和分析中改善业务的选项。

对于许多组织来说,转变业务需求和预算现实意味着技术部署必须既有战略性又有敏捷性。C&W
Services公司专注于使用技术改进业务流程。许多组织的大量数据存在于独立应用程序中,处于闲置状态并等待被利用。而寻找一种分析应用程序间数据的方法有可能提高效率。
数据提供了有意义和有价值的见解,使人们具备了技术决策能力
在以下的数据分析之旅中,将提供六项数据管理技巧,可帮助组织从只是谈论关键指标转变为针对战略决策数据采取行动。在应用中,还可以帮助找到组织内可操作数据的快捷方式。
(1)从企业的数据模型开始
组织很有可能为其支持的功能提供了多个有针对性的最佳应用程序。但是,如果将这些信息存储在不同的系统中,那么其信息的价值是什么?要开始实施数据管理过程,重要的是要在企业内的所有应用程序中调整数据模型,以便跨系统进行数据关联。数据可视化可以显着改善企业内部的决策。但是,源数据清理和排列是第一个关键步骤,人们对此不应低估。
(2)实施数据管理流程
在排好了数据模型之后,保持其组织性很重要。企业建立一个流程或系统来维护源事务和主数据。适当的数据管理将使企业能够构建其数据模型,并随时增强现有分析。由于糟糕的数据管理实践,很容易让人对数据分析或技术部署丧失信心。
(3)进行可视化计数
设置数据可视化时,请牢记最终目标。企业确保自己对仪表板的行为变化有充分的了解,并确保自己已与其关键业务利益相关者进行合作。例如,在设施管理中,数据可以成为预测性维护中的游戏改变者。在行业中,了解维护事件的主要指标以及通过大量数据输入可视化数据,可以帮助维护团队主动改进维护流程,从而延长机器或物理资产的使用寿命。相关人员需要考虑数据可视化如何为其业务带来类似的流程改进。
(4)了解数据所有权在哪里
一旦开始清理数据的过程,将数据模型的各个部分拼凑在一起,就会自然地进行数据所有权问题的对话。作为一个组织,企业需要定期就仪表板的所有权及其所描绘的数据进行对话。其技术同行不拥有这些数据,也没有建立关于数据的指标。当其组织从一个捕获但不真正依赖数据的组织转换为需要主数据和事务数据完全透明的数据时,数据质量和度量标准定义的所有权是增长和流程采用中的关键成功因素。
(5)建立自己的交付引擎
组织可以引入可视化技术,虽然一开始可能并不确切地知道其作用,但一旦采用,管理人员和员工之间的想法就会蓬勃发展,并且请求管道将会快速增长。过早释放这些功能可能会导致一些错误的启动。而在将可视化引入组织之前,需要确保已经构建了引擎,建立一个入口过程,开发了优先级机制,并考虑了所有安全隐患。
(6)授权和培训企业的业务合作伙伴
可视化应该是真正的伙伴关系,IT不应该是唯一主导的事物。企业需要构建自己的自助服务引擎。确定其团队应该在何时运行,并确定与技术团队的合作,以及IT如何提供指导和支持。可以确定最接近流程的人员需求,并在技术团队中以“等待时间”来填补需求。
“大数据”这个词已经引起了很多人的关注,但随着大数据的概念发生波动以适应瞬息万变的市场,人们将在未来几年越来越了解大数据。在企业中,数据提供了有意义且有价值的见解,使人们掌握了能够简化效率、跟踪安全数据,并提高客户满意度的技术决策能力。当正确管理和使用数据时,数据可能是拥有洞察力的关键,这种洞察力可让企业提升新的高度或获得更多的利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12