京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习大数据有什么用?大数据当前和未来的优势是什么
大数据分析如今已不能再称之为新技术。大多数移动应用程序开发人员已经明白,他们需要挖掘他们的数据来积极获取日常的见解。许多大型应用程序开发企业已经意识到,要在市场上不断地发展和更新,必须采用大数据技术。亚马逊,微软,甲骨文等大型跨国公司已经采用了大数据解决方案来拓展业务,希望为消费者提供最好的服务。科多大数据带你来看看。
据预测,以目前的速度发展,到2020年大数据的市场规模将超过2030亿美元。2017年已经结束,随着需求的增长,数据的重点也在以同样的速度增长。2017年以来,大数据的主要趋势围绕企业的大数据能力发展。移动应用程序开发人员正在寻找以更快的速度精确分析更多数据的最佳方法。大数据已经成为在最初投资中获得成功的技术。因此,许多移动应用程序开发商和大公司都期待着扩大他们的大数据项目。大数据实施的目标是在不久的将来取得更大的财务业绩。
随着这项技术的逐步回应和财务增长,以下是一些预测,以证明大数据将在2018年能成熟应用并卓有成效。
1.提高速度
从基本的蓝牙连接到大数据分析,如今的技术正在迅速发展。随着世界慢慢接受诸如5G网络等新技术,高速网络和数据分析成为首要关注点。要构建更多这样的实时应用程序,移动应用程序开发人员需要高效地管理数据分析。
最好的解决方案是采用大数据。它以最好的方式以前所未有的速度分析大量的数据。大数据分析比传统的数据分析技术速度更快。
2.云计算的影响
就像大数据一样,云计算的应用还在不断上升。数据分析师认为,在基于云计算的大数据分析解决方案(BDA)方面的投入是值得的。调研机构IDC预测,在未来,这些基于云计算的BDA技术的支出是主要内部部署解决方案支出的4.5倍。
许多大型公司正在设法在其解决方案中实现云功能。这些解决方案提供了更好的分析管理和高效的运行。到2018年,云计算将成为大数据中的主要部分。由此,传统分析提供商与云计算供应商之间的竞争将会越来越激烈。
像hadoop,Storm,Spark等公司已经开始主导大数据分析的业务。而行业领先的云计算供应商,如谷歌云,IBM,AWS和微软Azure都在提供大数据分析产品。
3.人工智能
随着企业向机器学习技术、复杂系统和高级分析的方向发展,人工智能(AI)的投资已增加了两倍。
在提供最佳解决方案方面,大数据分析供应商之间一直存在着激烈的竞争。随着人工智能(AI)和机器学习等技术的实施和解决,其竞争日益加剧。在过去的几年中,这类解决方案主要影响了市场的增长。顶级的移动应用程序开发人员正在将人工智能的功能集成到许多应用程序中。2017年将在大数据中采用人工智能提供一个更大的愿景。
4.可观的薪酬
在大数据分析解决方案的行业领先企业中,大数据技能和项目提供了可观的薪酬标准。过去几年,随着大数据在市场上的发展,数据科学家和数据库专业人员的薪酬得到更多的增长。专家们表示,随着大数据需求的增加,从事大数据项目的移动应用开发者的薪酬将会大幅增长。
此外,还有一些在线培训网站提供有关Hadoop,Spark等大数据技术的付费课程。预计未来几年培训的人数有可能增加。企业对大数据专家的需求可能会持续。
5. 巨大的生产力
大数据带来了许多挑战。专家建议,成功克服这些挑战的组织可以获得更好,更高的生产力。根据调研机构IDC公司的预测,到2020年,通过大数据解决方案,企业将能够分析相关数据,并提供最佳解决方案。这将提高组织的生产力,并为他们的消费者和市场价值提供更多的服务。
为了提高组织的工作效率,重要的是要确定哪些数据是重要的,还需要评估向消费者提供可操作的见解的过程。
大数据技术无疑将提供最好的数据分析解决方案,为组织带来更好的生产力。这无疑是市场上最有意义的成就。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01