京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习大数据有什么用?大数据当前和未来的优势是什么
大数据分析如今已不能再称之为新技术。大多数移动应用程序开发人员已经明白,他们需要挖掘他们的数据来积极获取日常的见解。许多大型应用程序开发企业已经意识到,要在市场上不断地发展和更新,必须采用大数据技术。亚马逊,微软,甲骨文等大型跨国公司已经采用了大数据解决方案来拓展业务,希望为消费者提供最好的服务。科多大数据带你来看看。
据预测,以目前的速度发展,到2020年大数据的市场规模将超过2030亿美元。2017年已经结束,随着需求的增长,数据的重点也在以同样的速度增长。2017年以来,大数据的主要趋势围绕企业的大数据能力发展。移动应用程序开发人员正在寻找以更快的速度精确分析更多数据的最佳方法。大数据已经成为在最初投资中获得成功的技术。因此,许多移动应用程序开发商和大公司都期待着扩大他们的大数据项目。大数据实施的目标是在不久的将来取得更大的财务业绩。
随着这项技术的逐步回应和财务增长,以下是一些预测,以证明大数据将在2018年能成熟应用并卓有成效。
1.提高速度
从基本的蓝牙连接到大数据分析,如今的技术正在迅速发展。随着世界慢慢接受诸如5G网络等新技术,高速网络和数据分析成为首要关注点。要构建更多这样的实时应用程序,移动应用程序开发人员需要高效地管理数据分析。
最好的解决方案是采用大数据。它以最好的方式以前所未有的速度分析大量的数据。大数据分析比传统的数据分析技术速度更快。
2.云计算的影响
就像大数据一样,云计算的应用还在不断上升。数据分析师认为,在基于云计算的大数据分析解决方案(BDA)方面的投入是值得的。调研机构IDC预测,在未来,这些基于云计算的BDA技术的支出是主要内部部署解决方案支出的4.5倍。
许多大型公司正在设法在其解决方案中实现云功能。这些解决方案提供了更好的分析管理和高效的运行。到2018年,云计算将成为大数据中的主要部分。由此,传统分析提供商与云计算供应商之间的竞争将会越来越激烈。
像hadoop,Storm,Spark等公司已经开始主导大数据分析的业务。而行业领先的云计算供应商,如谷歌云,IBM,AWS和微软Azure都在提供大数据分析产品。
3.人工智能
随着企业向机器学习技术、复杂系统和高级分析的方向发展,人工智能(AI)的投资已增加了两倍。
在提供最佳解决方案方面,大数据分析供应商之间一直存在着激烈的竞争。随着人工智能(AI)和机器学习等技术的实施和解决,其竞争日益加剧。在过去的几年中,这类解决方案主要影响了市场的增长。顶级的移动应用程序开发人员正在将人工智能的功能集成到许多应用程序中。2017年将在大数据中采用人工智能提供一个更大的愿景。
4.可观的薪酬
在大数据分析解决方案的行业领先企业中,大数据技能和项目提供了可观的薪酬标准。过去几年,随着大数据在市场上的发展,数据科学家和数据库专业人员的薪酬得到更多的增长。专家们表示,随着大数据需求的增加,从事大数据项目的移动应用开发者的薪酬将会大幅增长。
此外,还有一些在线培训网站提供有关Hadoop,Spark等大数据技术的付费课程。预计未来几年培训的人数有可能增加。企业对大数据专家的需求可能会持续。
5. 巨大的生产力
大数据带来了许多挑战。专家建议,成功克服这些挑战的组织可以获得更好,更高的生产力。根据调研机构IDC公司的预测,到2020年,通过大数据解决方案,企业将能够分析相关数据,并提供最佳解决方案。这将提高组织的生产力,并为他们的消费者和市场价值提供更多的服务。
为了提高组织的工作效率,重要的是要确定哪些数据是重要的,还需要评估向消费者提供可操作的见解的过程。
大数据技术无疑将提供最好的数据分析解决方案,为组织带来更好的生产力。这无疑是市场上最有意义的成就。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16