
大数据时代:你完全想象不到自己的数据有多大的价值
进入信息大爆发之后的年代,我们已经习惯了网络为自己带来的便利,习惯了足不出户便知天下事的豪情,习惯了动动手指便能购尽世间万物的爽利,但所谓有利就有弊,我们需要付出的代价则是个人数据。其实通过等价交换的原则来看,数据显然没有普通人认为的毫无价值。
我们在网络中畅游,每时每刻都在产生着数据,而这些数据若单独拿出来看,无法获得有效的价值,但是联动起来之后所带来的附加价值,更会震惊所有人。
数据从未缺少 只是还未被记录
从古至今,数据永远伴随在我们身边,不过在过去,由于我们的数据没有被有效的记录与整理,因此造成了数据上的浪费。而在现代社会,由于用户上网时的操作会被记录,因此以前得不到保留的数据存续了,用户的数据被集中起来进行归纳处理,价值便在归纳之后陡然显现。
举一个简单的例子,当我们需要在网上点一份外卖时,商户能够很轻易获得我们许多个人的信息,如送餐上门需要的家庭或者单位地址及电话;还能根据用户之前的消费习惯进行菜品上的调整, 如加辣或者不加辣;根据用户使用的移动支付渠道,可以了解用户的信用度以及是否拥有其他贷款等更多信息。
从以上的例子就能看出,如果有需要,商家甚至能够继续追踪下去,直至对用户进行完全的画像。这便是数据足够以后形成了大数据,而这也是大数据的特点,高容量、多样性、关联性强、应用价值高等特点。
尤其在即将到来的物联网时代,数据更会出现指数级增长,我们使用的所有智能设备都能完整的把我们所有行为通过数据记录下来。数据的骤然增长,也将对我们自身进行更为精准的画像。
数据的价值在于发现其背后的规律
简单来说,通过收集这些数据进行分析之后,将会发现大数据将比我们自身更了解自己。这其实不难理解,我们自己也无法准确记住每时每刻自己在做何事,但通过智能设备却能准确记录下来,并且还会进行整理分析。
不要小看数据的价值,当数据量还稀少时,由于缺乏联动性,因此价值还未显现,但是当样本足够多时,将会从中发现出必然的规律,而这些规律即是价值的体现。但是当数据量还不够多时,却可能得出错误的结论。
用抛硬币来举例,在绝对公平且没有外力干扰的情况下,当我们抛掷数量过少时,可能由于运气缘故造成同一面连续多次出现,这时可能会错误的认为其中一面出现的几率要比另一面更高。但是通过把抛掷的次数增加,会发现其实正反面出现的几率均趋近于二分之一,随着数据量的增多,这个数字也会与二分之一更加接近,这便是数据的价值,发掘其中的规律。
大数据时代下的精准营销
我们个人数据同理,大数据时代下,通过收集到足够多的数据进行分析后,可以挖掘其中背后潜藏的规律。而在发现出这些规律之后,除了能够为用户进行画像,还能为企业提升业务,降低运营成本,进行精细化运营做出更多的贡献。
比如通过收集某个客户的数据,可以知道这位客户喜欢运动、注重养生,特别喜欢在晚饭过后进行慢跑,甚至能够知道具体的跑步时长以及路线。对于电商可以对该客户推荐一些运动日用品,对于餐饮业则可以推荐一些适合养生的菜品,或者结合用户其他更多的数据,可以精准的判断其需求是什么,这样精准化运营将会使企业在节省大量成本的条件下创造更多价值。
当然,这样一来就带来了一个后果,那便是数据安全。个人数据也许将让企业更好的了解用户,让用户享受到更加优质的服务,但是当这些服务变成了骚扰,推荐变成了轰炸后,用户就已经明白自己的数据被泄漏了。
数据安全既是财产安全
个人数据的泄露是如今网络最常见的网络犯罪,而数据泄露也会对个人造成严重的困扰,小到信息骚扰推送,大到信用卡的盗刷以及个人信息冒用,严重的甚至会造成刑事犯罪。
因此对于用户而言,目前国内的个人数据安全形势非常严峻,由于特殊的国情使然,造成许多应用程序必须让客户开放自己的个人隐私数据才可以使用。有数据显示,目前手机APP越界获取个人信息已成为网络诈骗的主要源头,高达96.6%的安卓应用会获取用户手机隐私权限,而iOS应用的这一数据也高达69.3%。
通过这些被跨界获取的个人隐私数据,已经在全球都形成了一个庞大的“黑色产业”,年产值甚至高达上千亿元。这些黑产从业者,利用大数据进行精确推送,诱导用户消费,已经开始跨过了法律的边界。这些黑产庞大的流动资金,也在侧面证明了个人数据的价值,也希望用户能够明白自己的数据有多么珍贵。
小结
前段时间百度李彦宏说过,中国消费者乐意用自己的隐私数据换取便利。但需要注意的是,也许目前消费者不得不用自己的隐私去换取方便,但随着个人隐私数据重视程度的不断提升,这种企业也将不得不做出改变。
用户的数据是一处被掩埋的金矿,我们发现了,可以用它来获得更好的服务,但不是以强迫的方式,毕竟数据的所有权在用户本身。大数据时代,我们自身的数据更会价值连城。让用户明白自身数据的价值,让用户掌握自己的数据,让用户能够与企业平等相待,也是大数据时代的真正意义所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28