京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析商业智能的主要研究内容
BI是以现代管理理论为指导,信息技术为支撑的集成系统。近年来,它的研究热点主要集中在三个方面:支撑技术的研究、体系结构的研究、应用系统的研究。
1.支撑技术。BI支撑技术主要包括两个方面:一是计算机技术,主要包括数据仓库、数据集市技术;数据挖掘技术;OLTP、OLAP、Legacy等分析技术;数据可视化技术;计算机网络技术。二是现代管理技术,主要包括统计、预测等运筹学方法;客户管理、供应链管理、企业资源计划等管理理论和方法;企业建模方法。
支撑技术的研究注重跟踪相关技术的最新发展,例如对数据仓库的研究集中在数据集成中数据模式的设计、数据清洗和数据转换、导入和更新方法;数据挖掘的研究重点则偏向数据挖掘算法以及数据挖掘技术在新的数据类型、应用环境中使用时所出现的新问题的解决上,如对各种非结构化数据的挖掘、数据挖掘语言的标准化以及可视化数据挖掘等。联机分析处理研究主要集中在ROLAP(基于关系数据库的OLAP)的查询优化技术和MOLAP(基于多维数据组织的OLAP)中减少存储空间和提高系统性能的方法;数据仓库、数据挖掘和OLAP相结合的产物联机分析挖掘(OLAM)也是目前研究的热点。企业建模是为解决如何建立特定企业模式的辅助工具,比较新的建模方法包括基于UML的企业建模方法。
2.体系结构。BI体系结构是指通过识别和理解数据在系统中的流动过程和数据在企业的应用过程来提供BI系统应用的主框架。BI的体系结构主要包括数据预处理、数据仓库、数据分析以及数据展现等几部分,BI基本体系结构如图1所示。BI体系结构的研究关心采用什么样的体系结构才能使BI系统具有良好的性能。
3.应用系统。对于应用系统的研究重点放在对各个应用领域所面临的决策问题的分析,根据对各类问的挑战,Internet、IT技术以及人工智能的不断发展,则为BI的不断完善提供了强大的技术支持。未来,BI有望进一步获得长足发展,从根本上改变决策方式。具体来说,BI未来发展将集中于以下几点:
(1)支撑技术。基于关系对象数据库的数据仓库将是未来的一个发展方向,数据仓库的平台性能将得到很大改善。数据挖掘方法和算法研究将更加深入,专门用于知识发现的数据挖掘语言有望进一步向标准化发展。基于数据仓库的数据挖掘与OLAP将实现融合和互补,从而使分析操作智能化,使挖掘操作目标化。信息可视化进程进一步发展,以提供更优的洞察力。对非结构化数据的处理和分析,比如文本挖掘和WEB挖掘的能力将大大增强。
(2)体系结构。BI方案的协同性和开放性将进一步提高。企业能够利用合作伙伴的数据仓库或Intranet系统中的多维数据集进行决策分析活动,并且OLAP及其它BI的应用以Web服务形式提供,以XML形式发放BI应用的分析结果是新的发展趋势。
(3)应用系统。BI系统将更具专业化和行业化的特点,笼统的BI系统渐渐成为慨念,BI根据每个领域关注的重点和分析模型,提供针对具体企业进行扩展的解决方案。各种商业分析模型、数据挖掘算法将集成到BI软件和分析应用之中,从而能够集中解决不同部门的需要。同时,BI应用与企业门户、企业应用集成紧密相连,新的BI系统不再是一个孤立的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06