
浅析商业智能的主要研究内容
BI是以现代管理理论为指导,信息技术为支撑的集成系统。近年来,它的研究热点主要集中在三个方面:支撑技术的研究、体系结构的研究、应用系统的研究。
1.支撑技术。BI支撑技术主要包括两个方面:一是计算机技术,主要包括数据仓库、数据集市技术;数据挖掘技术;OLTP、OLAP、Legacy等分析技术;数据可视化技术;计算机网络技术。二是现代管理技术,主要包括统计、预测等运筹学方法;客户管理、供应链管理、企业资源计划等管理理论和方法;企业建模方法。
支撑技术的研究注重跟踪相关技术的最新发展,例如对数据仓库的研究集中在数据集成中数据模式的设计、数据清洗和数据转换、导入和更新方法;数据挖掘的研究重点则偏向数据挖掘算法以及数据挖掘技术在新的数据类型、应用环境中使用时所出现的新问题的解决上,如对各种非结构化数据的挖掘、数据挖掘语言的标准化以及可视化数据挖掘等。联机分析处理研究主要集中在ROLAP(基于关系数据库的OLAP)的查询优化技术和MOLAP(基于多维数据组织的OLAP)中减少存储空间和提高系统性能的方法;数据仓库、数据挖掘和OLAP相结合的产物联机分析挖掘(OLAM)也是目前研究的热点。企业建模是为解决如何建立特定企业模式的辅助工具,比较新的建模方法包括基于UML的企业建模方法。
2.体系结构。BI体系结构是指通过识别和理解数据在系统中的流动过程和数据在企业的应用过程来提供BI系统应用的主框架。BI的体系结构主要包括数据预处理、数据仓库、数据分析以及数据展现等几部分,BI基本体系结构如图1所示。BI体系结构的研究关心采用什么样的体系结构才能使BI系统具有良好的性能。
3.应用系统。对于应用系统的研究重点放在对各个应用领域所面临的决策问题的分析,根据对各类问的挑战,Internet、IT技术以及人工智能的不断发展,则为BI的不断完善提供了强大的技术支持。未来,BI有望进一步获得长足发展,从根本上改变决策方式。具体来说,BI未来发展将集中于以下几点:
(1)支撑技术。基于关系对象数据库的数据仓库将是未来的一个发展方向,数据仓库的平台性能将得到很大改善。数据挖掘方法和算法研究将更加深入,专门用于知识发现的数据挖掘语言有望进一步向标准化发展。基于数据仓库的数据挖掘与OLAP将实现融合和互补,从而使分析操作智能化,使挖掘操作目标化。信息可视化进程进一步发展,以提供更优的洞察力。对非结构化数据的处理和分析,比如文本挖掘和WEB挖掘的能力将大大增强。
(2)体系结构。BI方案的协同性和开放性将进一步提高。企业能够利用合作伙伴的数据仓库或Intranet系统中的多维数据集进行决策分析活动,并且OLAP及其它BI的应用以Web服务形式提供,以XML形式发放BI应用的分析结果是新的发展趋势。
(3)应用系统。BI系统将更具专业化和行业化的特点,笼统的BI系统渐渐成为慨念,BI根据每个领域关注的重点和分析模型,提供针对具体企业进行扩展的解决方案。各种商业分析模型、数据挖掘算法将集成到BI软件和分析应用之中,从而能够集中解决不同部门的需要。同时,BI应用与企业门户、企业应用集成紧密相连,新的BI系统不再是一个孤立的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28