京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据离不开效益型数据中心的构建
在大数据价值日益凸显的背景下,企业需要首先提高数据中心的成本效益,以满足不断变化的业务需求,加大大数据的应用和相关基础设施的构建,满足对于大数据环境下数据中心高性能、高可扩展性、高安全性和高可用性的要求。
大数据核心分析能力需要强大的后台支撑
大量非结构化数据带来的是数据量爆发式的增长,对存储容量、传输速率、计算速度等要求更高,因此企业必须考虑更具性价比的计算和存储方式。为了提高快速高效的处理大量数据的能力,企业需要对整个IT基础设施进行优化设计,充分考量后台数据中心的高节能性、高稳定性、高安全性、高可扩展性、高度冗余,基础设施建设这5个方面,同时更需要解决大规模节点数的数据中心的部署、高速内部网络的构建、机房散热以及强大的数据备份等问题。只有构建好这样的一个强大的后台支持,大数据应用才能保证正常运转。
大数据离不开效益型数据中心的构建
大数据应用的爆发性增长已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。这一变化对数据中心架构厂商和其他IT基础设施厂商也将是发展的重要机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要,进行大量的数据处理的计算能力也相应提高。在所有厂商中,关联紧密的存储厂商已经意识到这一点,他们开始修改基于块和文件存储系统的架构设计以适应这些新的要求。但是,其他方面的厂商还未积极跟进,虽然我们有云计算数据中心方案,但是,面向企业的大数据数据中心更应该考虑的是运营成本和经济性。深入了解大数据应用的数据中心经济学对于提高企业的实际利润率,具有十分重要的价值。
大数据更需要突破存储、性能瓶颈
大数据应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当会影响系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。此外,大数据应用还存在实时性的问题,特别是涉及与网上交易或者金融类相关的应用。比如,网络成衣销售行业的在线广告推广服务需要实时对客户浏览记录进行分析,并准确地进行广告投放。这就要求存储系统在必须能够支持上述特性的同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。
大数据是一个朝阳产业,将推动数据中心基础设施及相关软件的爆发式增长,企业部署的数据中心环境也需做出相应的变革与创新。整体来看,大数据环境的构建并不是遥不可及的事情。正如它改变了传统IT环境一样,大数据将在各方面力量的推动下茁壮成长。服务器、存储系统、服务、大数据技术软件等都已经蓄势待发,未来也必将蓬勃发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12