京公网安备 11010802034615号
经营许可证编号:京B2-20210330
什么是大数据问题
在我们看来,计算机科学经常谈的是对资源的管理。最典型的资源就是时间、空间、能量。数据在以前并没有被认为是一种资源,而是被认为是一种使用资源的物品。但是,我们看到现在的数据已经被认为是一种资源,这是我们可以利用并从中获得价值和知识的一种资源。我们将数据资源同我们所用的时间、空间资源结合在一起形成一个系统,从而使我们做出适时的、节约成本、高质量的决定和结论,因此我们必须以不同方式进行权衡。但是数据资源和时间、空间资源有很大的不同。如果我给你更多的时间和空间你会更开心,但是数据却不是这样,并不是给你越多的数据你就会越开心。就像是你走进一个公司,问他们你们最大的问题是什么,他们通常会说最大的问题就是数据太多了。目前来看,越来越多的数据会给我们带来越来越大的麻烦。因此我们必须找到一个解决这个问题的办法,一种是统计学的方式,另外一种是计算的方式。统计学方式可能更微妙,所以我们等一下花更多时间在上面。
1. 对复杂性的疑问比数据增长的速度更快;
一些数据科学家他们经常谈,在一个数据库的表格中行代表人,而列是对人的特征记录,基本的数据库可能会有几千个行--意味着有几千个人的信息在一个数据库里,然后你再收集每个人的基本信息,并不需要太多,比如个人的年龄、地址、高度、收入,这些数据足以让你了解在这个数据库中的每一个人。
现在我们来考虑数百万的“行”,因为我们确实对每个人的个性和细节十分感兴趣。比如说你是在天津居住,你喜欢迈克尔·杰克逊,你喜欢骑自行车,那么你患某种疾病的概率是多少等等,我们在数据库中都有关于你的信息。所以我们看到有关人数的行数在不断的增加,同时描述也更多,那么列数也在增加。有些我们还可以添加一些列,比如说这个人昨天吃了什么,他的音乐、读书的偏好,还有他基因的特点等。但问题是我们不光对个人的列感兴趣,我们对列的集合更感兴趣。如果你生活在天津,你喜欢骑自行车,你最喜欢吃的水果是苹果,这些都是具体的这些列的信息集合。
现在问题就是我们需要指数级的列和行增长的组合方式,随着行数和列数的线性增长,我们考虑的数据就会呈指数倍的增加。我们来举一个医学方面的案例,把列设想成肝病的信息--1是有肝病,0是没有肝病;但是有一些列所描述的情况能够很好地预测肝病的发生。假设如果你喜欢在天津,喜欢骑自行车,喜欢吃香蕉,这样的人就会得肝病。如果你这个时候去看医生,医生问你住在哪里,你说天津;医生问你周末做什么,你说骑自行车;问你最喜欢吃的水果是什么,你说是香蕉,那么医生就会告知你需要检查一下肝脏。这当然是个假设。任何指令集里面都需要看这些数据,进行论证,找到有意义的模式。但当数据变得越来越大,找到有意义的模式和信息变得越来越难。所以,大数据并不是非常好的事情,并不是有更多的数据就会获得更多的知识。大数据其实才是最大的麻烦。现在来看数据越来越难转变成知识,如果我们想要获得真正有意义的东西,我们需要采取一些行动。我们统计学家非常担心:我们应当如何消除噪音,真正得到里面所含的知识。统计学上的程序和算法,必须运行在计算机上,.大的数据会花更多的时间运行,使我们不能快速的做决策了。真正有大问题的时候,我们不知道如何解决和运行统计的程序,做出快速的决策,因此我们发现了第二个解决方案。第一个是统计学上,第二个是计算方面。
2.大数据会导致在可接受的时间范围内复杂算法不能够运用
第二个就是计算方面,算法需要时间运行,还要登录、输出等,需要几秒钟的决策,比如在线的拍卖需要几秒钟做决策,我们还需要给予一些数据,比如说输出的算法。当数据变多,这种方法可能会完成不了,或者是需要很多的运行时间,这是时我们要怎么做?要把这些数据舍弃掉吗?舍弃的结果是什么?可能使我的数据库空间增加,如果我不断地删除我的数据。我应当让数据运行慢一些,但是这样就会使处理的时间过长。我们面临很大的问题,我们将时间、空间与数据、不断增长的数据规模结合在一起,如果没有很好的处理这些大数据的扩展算法。这确实是一个存在的问题,我认为这个问题是根本且基础的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28