京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据之和的价值远大于数据的价值之和
在宽带化、移动互联网、物联网、社交网络、云计算的催生下,一个大数据的时代,不经意间顺理成章地翩然而至。不久前,沣西大数据产业园悄然落户陕西省西咸新区,发展大数据产业正在“试水”。
全球数据总量在以每两年翻一番的速度增长
从事广告文化创意行业的何先生,清晰地记得,从12年前购买的仅有20GB硬盘容量的家用计算机,到为满足使用需求而不断扩容的80GB、120GB、250GB、500GB的主机存储空间,变化很快。“如今2TB的硬盘都不够用,还得靠移动存储设备来备份。”
根据IDC(国际数据公司)的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘),而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将总共拥有35ZB的数据量,增长近20倍。
由于数据规模的急剧膨胀,各行业累积的数据量越来越巨大,数据类型也越来越多、越来越复杂,已经超越了传统数据管理系统、处理模式的能力范围,于是“大数据”这样一个在含义上趋近于“无穷大”的概念才会应运而生。
“首先在于体量大,是一个数据全集的概念”,国家工信部软件服务业司司长陈伟为大数据概括出四方面特征,“第二是类型多,包括结构化数据、半结构化数据、非结构化数据等多种类型,其中视频数据在目前占到了90%以上的总额;第三要求速度快,需要以秒级为目标进行实时动态处理。”
“最后在于价值密度”,陈伟认为,由于大量有用和可能没用的数据并存,“遍地是金子,又遍地是沙子”,所以大数据的目的就在于从庞大的数据集合中找寻有价值的数据和知识,通过分析挖掘为各行业提供真正的智慧,“可以说21世纪是‘数据钻出石油’的时代。”
“以交互数据为例,目前一些自媒体平台,比如新浪微博,每天都有超过2500万条的微博信息在发布,里面有很多有价值的信息尚未得到发掘”,中国电子信息产业发展研究院副总工程师李峻认为,在这样庞大的非结构化数据背后,如何利用大数据技术,从海量堆积的交互数据当中发现带有趋势性、前瞻性的讯息,就能够发现并产生巨大的社会价值和商业价值。
一个小苹果背后的大数据:数据之和的价值远大于数据的价值之和
“由于数据的存储、分析、应用等方面的商业运营方式还没有定型,这个行业发展的潜力、创新空间都十分巨大”,陕西省西咸新区管委会副主任、沣西新城管委会主任刘宇斌打了一个“小苹果背后的大数据”的简单比方:
以陕西省苹果产业发展为例,诸如某品种苹果种在哪里最适宜生长所需要的空间地理信息数据,与具体产区的苹果产量、含糖量等数据叠加,并通过物联网等手段赋予苹果可追溯的唯一“身份”,在种植过程中实时监控,由每一个苹果“反馈”收集而成的数据,假如足够海量,就整合而成了大数据。
拥有了这些数据,首先可以通过数据租售服务的方式与潜在客户产生价值,“此类商业模式体现了数据之和的价值远远大于数据的价值之和。”
其次,如能运用组群分析、数据挖掘等科学方法,辅以云计算、分布式存储等手段,则可以对数据展开深层次分析和预测服务,“哪些苹果品质最好,市场反应更好,明年产量销量会怎样,各地市场对苹果购买的喜好会有何变化”,这种数据深挖及其背后的消费者行为预测分析,曾是统计学家的特权,未来则可能花费几分钟时间就可以完成。
数据经过积累,并与全国其他地方进行比对,则可为陕西苹果产业发展提供决策支持服务,并成为政府、行业指导果农生产的决策依据,避免产品滞销和果农利益受损。
最后,随着数据和分析方法共识性的建立,数据服务商有可能搭建一个第三方大数据分析平台,为更多的数据持有者提供数据整理、过滤、分析和处理服务,甚至有朝一日发展出类似于ebay、淘宝等电子商务交易平台一样的第三方数据共享交易平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12