
数据之和的价值远大于数据的价值之和
在宽带化、移动互联网、物联网、社交网络、云计算的催生下,一个大数据的时代,不经意间顺理成章地翩然而至。不久前,沣西大数据产业园悄然落户陕西省西咸新区,发展大数据产业正在“试水”。
全球数据总量在以每两年翻一番的速度增长
从事广告文化创意行业的何先生,清晰地记得,从12年前购买的仅有20GB硬盘容量的家用计算机,到为满足使用需求而不断扩容的80GB、120GB、250GB、500GB的主机存储空间,变化很快。“如今2TB的硬盘都不够用,还得靠移动存储设备来备份。”
根据IDC(国际数据公司)的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘),而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将总共拥有35ZB的数据量,增长近20倍。
由于数据规模的急剧膨胀,各行业累积的数据量越来越巨大,数据类型也越来越多、越来越复杂,已经超越了传统数据管理系统、处理模式的能力范围,于是“大数据”这样一个在含义上趋近于“无穷大”的概念才会应运而生。
“首先在于体量大,是一个数据全集的概念”,国家工信部软件服务业司司长陈伟为大数据概括出四方面特征,“第二是类型多,包括结构化数据、半结构化数据、非结构化数据等多种类型,其中视频数据在目前占到了90%以上的总额;第三要求速度快,需要以秒级为目标进行实时动态处理。”
“最后在于价值密度”,陈伟认为,由于大量有用和可能没用的数据并存,“遍地是金子,又遍地是沙子”,所以大数据的目的就在于从庞大的数据集合中找寻有价值的数据和知识,通过分析挖掘为各行业提供真正的智慧,“可以说21世纪是‘数据钻出石油’的时代。”
“以交互数据为例,目前一些自媒体平台,比如新浪微博,每天都有超过2500万条的微博信息在发布,里面有很多有价值的信息尚未得到发掘”,中国电子信息产业发展研究院副总工程师李峻认为,在这样庞大的非结构化数据背后,如何利用大数据技术,从海量堆积的交互数据当中发现带有趋势性、前瞻性的讯息,就能够发现并产生巨大的社会价值和商业价值。
一个小苹果背后的大数据:数据之和的价值远大于数据的价值之和
“由于数据的存储、分析、应用等方面的商业运营方式还没有定型,这个行业发展的潜力、创新空间都十分巨大”,陕西省西咸新区管委会副主任、沣西新城管委会主任刘宇斌打了一个“小苹果背后的大数据”的简单比方:
以陕西省苹果产业发展为例,诸如某品种苹果种在哪里最适宜生长所需要的空间地理信息数据,与具体产区的苹果产量、含糖量等数据叠加,并通过物联网等手段赋予苹果可追溯的唯一“身份”,在种植过程中实时监控,由每一个苹果“反馈”收集而成的数据,假如足够海量,就整合而成了大数据。
拥有了这些数据,首先可以通过数据租售服务的方式与潜在客户产生价值,“此类商业模式体现了数据之和的价值远远大于数据的价值之和。”
其次,如能运用组群分析、数据挖掘等科学方法,辅以云计算、分布式存储等手段,则可以对数据展开深层次分析和预测服务,“哪些苹果品质最好,市场反应更好,明年产量销量会怎样,各地市场对苹果购买的喜好会有何变化”,这种数据深挖及其背后的消费者行为预测分析,曾是统计学家的特权,未来则可能花费几分钟时间就可以完成。
数据经过积累,并与全国其他地方进行比对,则可为陕西苹果产业发展提供决策支持服务,并成为政府、行业指导果农生产的决策依据,避免产品滞销和果农利益受损。
最后,随着数据和分析方法共识性的建立,数据服务商有可能搭建一个第三方大数据分析平台,为更多的数据持有者提供数据整理、过滤、分析和处理服务,甚至有朝一日发展出类似于ebay、淘宝等电子商务交易平台一样的第三方数据共享交易平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10