京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据治理定义流程正确记录业务政策、规则和标准
定义流程记录数据定义、与业务术语相关的业务背景、分类、关系以及实施数据治理工作必须定义的政策、规则、标准、流程和衡量策略。此流程以“发现驱动定义”的形式与发现流程阶段迭代并行,同时,定义流程使发现流程更有重点和针对性。
构成定义阶段最重要的流程包括:
创建业务词汇表。此流程为获取和共享与重要数据有关的业务环境上下文的协作流程。除了预期的核心数据实体和属性定义外,上下文还包括规则、政策、参考数据、任意形式的注解、链接以及数据所有者,在此就不一一列举了。
·确保所有人达成共识--数据架构师、建模人员、开发人员、管理员及数据使用者:业务流程所有者以及运营和战略决策者。
数据分类。对于结构化数据来说,此流程通常被称为元数据管理--获取以元数据形式表示的相关支持业务和IT环境上下文。对于非结构化数据来说,在正确分析上下文环境,给内容做标记和归类以进行相关查询中,数据分类起到了非常重要的作用。
·有效的数据分类使业务用户了解环境上下文,快速跟踪信息,从而迅速应对规章遵从的需求,降低成本,提高效率,进一步了解业务和客户。通过降低集成复杂度、提高黑盒/自定义编码的透明度,可信数据分类使IT从中受益,并最终提高协作性、灵活性,缩短实现价值的时间。
数据关系定义。此流程在元数据(数据建模)和数据(业务层次结构)两个级别定义数据关系、映射及层次结构。
·没有关系的数据模型只不过是一张数据清单。定义主数据、交易数据和参考数据--以及依赖这些数据的应用程序和流程--之间预期的关系,并最终定义组织业务模型。数据层次结构(例如,组织结构、物料清单、客户、产品、销售、营销渠道)是组织制定计划,决策以及客户关系的基础。
参考数据管理。此流程定义和规范应用程序中或应用程序之间要使用的参考数据,以确保数据在获取及使用中的一致性。参考数据可以包括内部管理属性业务定义值表(如客户类型,产品颜色)、行业标准值(如ISO3166国家标准代码)、或行业规范标准(如GS1 GDSN数据同步代码表)。
·通用、标准化的参考数据确保能够进行数据的协调和汇总,并能从截然不同的应用程序、功能、地区或各代表处的共享数据中,或B2B贸易伙伴的共享数据中得到洞察力。
业务规则定义。此流程创建和记录建立数据验证、清洗、丰富、匹配、合并、屏蔽、归档、标准化等规则和政策的逻辑业务需求。这些规则既定义了机器支持的自动化流程,也定义了以人为中心的手动流程。
·当进行到实施流程阶段时,业务规则是确保数据可信、安全并最终适合业务使用的关键。
数据治理政策定义。此流程定义数据治理驱动政策,如数据责任和所有权,组织角色及职责,数据获取和验证标准,数据访问和使用,以及数据的屏蔽、归档、建立子集和保留。
·正确的定义、核准、宣传以及执行这些政策,就能将企业文化发展为把数据当作公司资产来管理的文化。如果没有这些自上而下、公司高层驱动的政策命令,将很难改变以往影响数据质量和安全性的行为。
其他相关政策调整。组织内有些其他工作可能已经体现了业务驱动或IT驱动的政策,设置如何管理和使用企业数据,只是目前还未被列为“数据治理”政策。其中包括信息安全、数据隐私、GRC、IT管理等方面的政策。
·如果一项数据治理工作是要准备研究和定义必须记录和执行的政策,那么这项工作可从已经完成的工作开始,调整哪些政策应归入数据治理工作,哪些政策只需认可和遵从,而哪些应该被替换或改进。
关键绩效指标(KPI)定义。此流程定义那些用于说明数据治理工作有效性和价值的方法,如服务水平协议(SLAs),数据质量及政策遵从操作基线衡量标准,投资回报率(ROI)和总体拥有成本(TCO)等等。
·如果没有衡量数据治理工作价值和有效性的方法,数据治理工作将不会获得赞助、资源、资金或优先权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27