
数据治理定义流程正确记录业务政策、规则和标准
定义流程记录数据定义、与业务术语相关的业务背景、分类、关系以及实施数据治理工作必须定义的政策、规则、标准、流程和衡量策略。此流程以“发现驱动定义”的形式与发现流程阶段迭代并行,同时,定义流程使发现流程更有重点和针对性。
构成定义阶段最重要的流程包括:
创建业务词汇表。此流程为获取和共享与重要数据有关的业务环境上下文的协作流程。除了预期的核心数据实体和属性定义外,上下文还包括规则、政策、参考数据、任意形式的注解、链接以及数据所有者,在此就不一一列举了。
·确保所有人达成共识--数据架构师、建模人员、开发人员、管理员及数据使用者:业务流程所有者以及运营和战略决策者。
数据分类。对于结构化数据来说,此流程通常被称为元数据管理--获取以元数据形式表示的相关支持业务和IT环境上下文。对于非结构化数据来说,在正确分析上下文环境,给内容做标记和归类以进行相关查询中,数据分类起到了非常重要的作用。
·有效的数据分类使业务用户了解环境上下文,快速跟踪信息,从而迅速应对规章遵从的需求,降低成本,提高效率,进一步了解业务和客户。通过降低集成复杂度、提高黑盒/自定义编码的透明度,可信数据分类使IT从中受益,并最终提高协作性、灵活性,缩短实现价值的时间。
数据关系定义。此流程在元数据(数据建模)和数据(业务层次结构)两个级别定义数据关系、映射及层次结构。
·没有关系的数据模型只不过是一张数据清单。定义主数据、交易数据和参考数据--以及依赖这些数据的应用程序和流程--之间预期的关系,并最终定义组织业务模型。数据层次结构(例如,组织结构、物料清单、客户、产品、销售、营销渠道)是组织制定计划,决策以及客户关系的基础。
参考数据管理。此流程定义和规范应用程序中或应用程序之间要使用的参考数据,以确保数据在获取及使用中的一致性。参考数据可以包括内部管理属性业务定义值表(如客户类型,产品颜色)、行业标准值(如ISO3166国家标准代码)、或行业规范标准(如GS1 GDSN数据同步代码表)。
·通用、标准化的参考数据确保能够进行数据的协调和汇总,并能从截然不同的应用程序、功能、地区或各代表处的共享数据中,或B2B贸易伙伴的共享数据中得到洞察力。
业务规则定义。此流程创建和记录建立数据验证、清洗、丰富、匹配、合并、屏蔽、归档、标准化等规则和政策的逻辑业务需求。这些规则既定义了机器支持的自动化流程,也定义了以人为中心的手动流程。
·当进行到实施流程阶段时,业务规则是确保数据可信、安全并最终适合业务使用的关键。
数据治理政策定义。此流程定义数据治理驱动政策,如数据责任和所有权,组织角色及职责,数据获取和验证标准,数据访问和使用,以及数据的屏蔽、归档、建立子集和保留。
·正确的定义、核准、宣传以及执行这些政策,就能将企业文化发展为把数据当作公司资产来管理的文化。如果没有这些自上而下、公司高层驱动的政策命令,将很难改变以往影响数据质量和安全性的行为。
其他相关政策调整。组织内有些其他工作可能已经体现了业务驱动或IT驱动的政策,设置如何管理和使用企业数据,只是目前还未被列为“数据治理”政策。其中包括信息安全、数据隐私、GRC、IT管理等方面的政策。
·如果一项数据治理工作是要准备研究和定义必须记录和执行的政策,那么这项工作可从已经完成的工作开始,调整哪些政策应归入数据治理工作,哪些政策只需认可和遵从,而哪些应该被替换或改进。
关键绩效指标(KPI)定义。此流程定义那些用于说明数据治理工作有效性和价值的方法,如服务水平协议(SLAs),数据质量及政策遵从操作基线衡量标准,投资回报率(ROI)和总体拥有成本(TCO)等等。
·如果没有衡量数据治理工作价值和有效性的方法,数据治理工作将不会获得赞助、资源、资金或优先权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10