京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python互斥锁、加锁、同步机制、异步通信知识总结
某个线程要共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进入写入操作,从而保证了多线程情况下数据的正确性。
采用f_flag的方法效率低
创建锁
mutex=threading.Lock()
锁定
mutex.acquire([blocking])#里面可以加blocking(等待的时间)或者不加,不加就会一直等待(堵塞)
释放
mutex.release()
import threading
from threading import Thread
from threading import Lock
import time
thnum=0
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之
class MyThread(threading.Thread):
def run(self):
mutex.acquire()
for i in range(10000):
global thnum
thnum+=1
print(thnum)
mutex.release()
def test():
global thnum
mutex.acquire() #等待可以上锁,通知而不是轮训,没有占用CPU
for i in range(10000):
thnum+=1
print(thnum)
mutex.release()#解锁
mutex=Lock()
if __name__=='__main__':
t=MyThread()
t.start()
#创建一把互斥锁,默认是没有上锁的
thn=Thread(target=test)
thn.start()
'''''
10000
20000
'''
只要一上锁,由多任务变为单任务,相当于只有一个线程在运行。
下面的代码相对上面加锁的时间变短了
import threading
from threading import Thread
from threading import Lock
import time
thnum=0
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之
class MyThread(threading.Thread):
def run(self):
for i in range(10000):
mutex.acquire()
global thnum
thnum+=1
mutex.release()#释放后,都开始抢,这样上锁的时间变短
print(thnum)
def test():
global thnum
for i in range(10000):
mutex.acquire()
thnum+=1
mutex.release()#解锁
print(thnum)
mutex=Lock()
if __name__=='__main__':
t=MyThread()
t.start()
#创建一把互斥锁,默认是没有上锁的
thn=Thread(target=test)
thn.start()
'''''
10000
20000
'''
只有必须加锁的地方才加锁
同步:按照预定的先后顺序执行
一个运行完后,释放下一个,下一个锁定后运行,再释放下一个,下一个锁定后,运行后释放下一个..... 释放第一个
异步:
#异步的实现
from multiprocessing import Pool
import time
import os
#getpid()获取当前进程的进程号
#getppid()获取当前进程的父进程号
def test():#子进程
print("----进程池中的进程-----pid=%d,ppid=%d --"%(os.getpid(),os.getppid()))
for i in range(3):
print("-----%d----"%i)
time.sleep(1)
return "over" #子进程执行完后返回给操作系统,返回给父进程
def test2(args):
print("-----callback func----pid=%d"%os.getpid())#主进程调用test2
print("------callback func---args=%s"%args)
def main():
pool=Pool(3)
pool.apply_async(func=test,callback=test2)#回调
time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2
print("----主进程-pid = %d"%os.getpid())
if __name__=="__main__":
#main()
pool=Pool(3)
pool.apply_async(test,callback=test2)#回调
time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2
print("----主进程-pid = %d"%os.getpid())
'''''显示结果不太正确,应该先运行test呀,再运行test2
-----callback func----pid=7044
------callback func---args=over
----主进程-pid = 7044
----进程池中的进程-----pid=3772,ppid=7044 --
-----0----
-----1----
-----2----
'''
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12