京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在当今市场上,商业的成功离不开有效的客户关系管理(Customer Relationship Management,CRM)。客户关系管理的本质是更有效地进行竞争。客户关系管理的目标是缩减销售周期和销售成本、增加收人、寻找扩展业务所需的新的市场和渠道、以及提高客户的价值、满意度、赢利性和忠实度。企业实施客户关系管理,可以更低成本、更高效率地满足客户的需求,从而可以最大程度地提高客户满意度及忠诚度,挽回失去的客户,保留现有的客户,不断发展新的客户,发掘并牢牢地把握住能给企业带来最大价值的客户群。

客户关系管理最基本的含义就是管理所有与客户的相互作用。随着客户信息的绝对容量的急剧增大,企业与客户的相互作用日益复杂,数据挖掘被推到了客户关系管理的最前端。利用在传统的数据库技术基础上发展起来的数据挖掘等先进的智能化信息技术,利用神经网络等分析技术,挖掘出潜在的有用信息,用于企业辅助决策。
1. 定义商业问题(Define business problem)。每一个客户关系管理应用程序都有一个或多个商业目标,为此你需要建立恰当的模型。根据特殊的目标,如“提高响应率”或“提高每个响应的价值”,需要建立完全不同的模型。问题的有效陈述包含了评测客户关系管理程序结果的方法。
2. 建立行销数据库(Build marketing database)。需要建立一个行销数据库,因为操作性数据库和共同的数据仓库常常没有提供所需格式的数据。此外,客户关系管理应用程序还可能影响系统快速、有效地执行。在建立行销数据库的时候,需要对它进行净化— 如果想获得良好的模型,必须有干净的数据。需要的数据可能在不同的数据库中,如客户数据库,产dAn数据库以及事务处理数据库。这意味需要集成和合并数据到单一的行销数据库中,并协调来自多个数据源的数据在数值上的差异。
3. 探索数据(Explore data)。在建立良好的预测模型之前,必须理解所使用的数据。可以通过收集各种数据描述(如平均值、标准差等探索统计量)和注意数据分布来开始进行数据探索。可能需要为多元数据建立交叉表,并且,图形化和可视化工具可以数据准备提供重要帮助。
4. 为建模准备数据(Prepare data for modeling)。这是建立模型之前数据准备的最后一步。这一步中主要有四个主要部分:一是要为建立模型选择变量,理想情况是将你拥有的所有变量加入到数据挖掘工具中,找到那些最好的预示值,但在实际中,这是非常棘手的。其中一个原因是建立模型的时间随着变量的增加而增加。另一个原因就是盲目性,包括无关紧要的数据列被加入,却很少甚至不能提高预测能力。二是从原始数据中构建新的预示值,例如使用债务——收入比来预测信用风险能够比单独使用债务和收人产生更准确的结果,并且更容易理解。三是你需要从数据中选取一个子集或样本来建立模型,使用所有的数据会花费太长的时间或者需要购买更好的硬件,对大多数客户关系管理问题来讲,使用经过恰当的随机挑选的子集并不会引起信息不足。建立模型的两种选择为:使用所有数据建立少数几个模型,或者建立多个以数据样本为基础的模型,后者常常能帮助你建立更准确有力的模型。四是,需要转换变量,使之和选定用来建立模型的算法一致。
步骤2到4是组成数据准备的核心。他们花费的时间或努力比其他几步加起来还多,数据准备和模型建立之间可能反复进行,因为你从模型中学到新的东西,而这又要你修改数据。数据准备阶段无论如何也要占去全部数据挖掘过程的50%到90%的时间和努力。
5. 数据挖掘模型的建立(Build model)。模型建立是一个迭代的过程,需要研究可供选择的模型,从中找出最能解决你的商业问题的一个。大多数客户关系管理应用程序都基于一种叫做监督学习的协议。你开始使用客户信息,而且期望的结果是已知的。例如,你有来自以前的邮件列表的历史数据,它与你现在使用的数据非常相似,或者,你可能不得不进行邮寄测试来确定人们对一个提议的响应如何。你将数据分为两组,使用第一组来训练或评估模型,接着使用第二组数据来测试模型。当训练和测试周期完成之后,模型也就建立起来了。
6. 评价模型(Evaluate model)。评价模型结果的方法中,最可能产生评价过高的指标就是精确性。假设有一个提议仅仅有1%的人响应。模型预测“没有人会响应”,这个预测99写是正确的,但这个模型100%是无效的。另一个常使用的指标是“提升多少”,用来衡量使用模型后的改进有多大,但是它并没有考虑成本和收入,所以最可取的评价指标是收益或投资回收率。针对不同的目标,如提升最大利润或最大投资回收率,你可以选取不同百分比的邮件列表来发出请求函。
7. 将数据挖掘运用到客户关系管理方案中(Deploy model and results)。在建立客户关系管理应用时,数据挖掘常常是整个产品中很小的但意义重大的一部分。例如:通过数据挖掘而得出的预测模式可以和各个领域的专家知识结合在一起,构成一个可供不同类型的人使用的应用程序。数据挖掘实际建立在应用程序中的方式由客户交互作用的本质所决定。与客户的交互作用的两种方式:客户主动联系你(inbound)或者你主动联系他们(outbound)。部署的需求是完全不同的。后一种方式的特征由你的公司所决定,因为联系活动是由公司发起,例如直接邮寄活动。结果,通过运用模型到你的客户数据库,来选择客户进行联系。在inbound事务中,如电话定购、Internet订购、客户服务呼叫等,应用程序必须实时响应。因此数据挖掘是内含在这种应用程序中的并且积极地做出推荐动作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27