
大数据及物联网让风险管理如虎添翼
企业善用大数据与物联网等科技,可进行有效的风险管理。运用大数据分析,除精算保险费率及揪出诈保、勾稽可疑的股票操作或违法贷款集团,亦可分析金流与人际网以强化洗钱防制。物联网技术则有助掌握诸多风险状况,利于预防抢救,甚至对风险降低提供优惠奖励。
过去一年并不平静,金融危安事件层出不穷,如第一银行ATM遭骇盗款案与兆丰银行防制洗钱疏失案等,风险管理顺势成为热门。据媒体报导,第一银行将出包的ATM机种全数汰换且重新整顿银行信息安全系统,兆丰银行则拟斥资人民币6亿元打造洗钱防制及法遵相关的信息安全系统。
经济不景气的年代,诈欺及各种违法案件特别多,技术也越来越高级,金融业与其他企业均有强化风险管理的需求。有需求就有供给,对于企管顾问与信息科技公司来说,客户端面临层出不穷的危机也可转化为源源不绝的商机,应善加把握。科技有助于风险管理,而以处理风险为主的行业当属保险业,企业可以从保险业的最近发展趋势,探索大数据与物联网等科技强化风险管理的门道。
大数据与保险诈欺
2016年9月间传出警方破获台湾南北两大知名医师涉嫌与保险黄牛勾结,以开立不实诊断证明书的手法协助病患诈领保险金,亦向社保中心申请社保补助,诈领保险金额合计约人民币1300万。本件能够顺利破案的主要关键就是大数据(Big Data),财团法人保险犯罪防制中心透过保险数据库的大数据统计分析,发现有特定保户向特定医院、特定医师求诊且有诸多不寻常现象,乃向警方举报因而破获这起巨额保险诈欺案。
保险业原来就是运用大数法则进行风险评估与保险相关金额(包括保险费、保险金及责任准备金等)的精算。随着大数据数据的海量扩增与分析技术的精进,保险公司更容易借助对特定族群与保险事故相关因素的大数据分析而精算适合的保险费与保险金。在上述保险诈欺案例,保险犯罪防制中心还能透过保险事故与保险金请领相关的大数据数据综合比对分析而勾稽出涉嫌诈领保险金的犯罪集团。此外,保险公司如新光人寿也有导入大数据以研析理赔风险,如建立“坏人模型”:被归类为坏人的客户系经由大数据综合分析后依其风险分数而推测其诈保可能性较高,基此保险公司在核保与出险理赔作业上就可更加谨慎,降低被诈保的风险。
物联网与外溢效果的保单
金融管理机构鼓励保险公司推出外溢效果的保单,不仅对保户提供保险的保障,还可达到健康促进的外溢效果,亦即对于降低保险事故发生机率的保户(如有良好运动习惯者),提供降低保费的优惠。国泰人寿于2016年9月间推出台湾首张外溢效果保单,保户投保后符合健康要求,续期保费可打折,再退还先前溢缴保费作为健康促进奖励金。富邦人寿也向金管申请具有外溢效果的计步保单,多走路可减免保费,只要1年中有120天以上,每天走路达5000步,即可享有保费减免的优惠。
物联网(IoT,如穿戴设备、智能衣、车联网等)有助于推广外溢效果的保单,透过穿戴设备、智能衣量测使用者的行动步数、生理数据,或是透过车联网记录驾驶的使用习惯与车辆状态,可让保险公司衡量保户的风险状况。如果因为保户保持良好的运动与驾驶习惯而可减少生病或车祸意外事故的发生,则可调降保险费,该保单也会比较好销售,具有双赢的效果。
物联网技术与大数据分析的结合运用还可提高预测的准度,保险公司除可更准确地抓出“坏人模型”以合理控制风险之外,亦可建立“好人模型”,亦即将风险较低的客户归类为好人,提供保费优惠也加速理赔审核作业。
科技、商业与风险
风险管理包括风险规避、风险降低、风险转嫁、风险承担等面向,可透过保险安排、契约设计、科技措施、政府介入等方式来处理。由前述保险业的最近发展趋势可知,大数据分析可运用在风险管理上,实务上除了保险之外,在股票市场进行市场监视以查缉内线交易、炒作股票,或是在银行贷款作业揪出诈贷或超贷等犯行,均可利用大数据来勾稽可疑的股票操作或是违法贷款集团,亦可借助综合分析金流与人际关系网以强化洗钱防制。物联网技术则有助于对于诸多风险状况的掌握,风险提高,则进行预防抢救;风险降低,则提供优惠奖励。企业如妥善利用大数据与物联网等科技,应可进行有效的风险管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28