
Python使用遗传算法解决最大流问题
本文为大家分享了Python遗传算法解决最大流问题,供大家参考,具体内容如下
Generate_matrix
def Generate_matrix(x,y):
import numpy as np
import random
return np.ceil(np.array([random.random()*10 for i in range(x*y)]).reshape(x,y))
Max_road
def Max_road(A,degree,start):
import random
import numpy as np
import copy
def change(M,number,start): # number 控制变异程度 start 控制变异量
x , y = M.shape
for i in range(start,x):
Line = zip(range(len(M[i])),M[i])
index_0 = [t[0] for t in Line if t[1]==0] # 获取 0 所对应的下标
index_1 = [t[0] for t in Line if t[1]==1] # 获取 1 所对应的下标
M[i][random.sample(index_0,number)[0]]=1 # 随机改变序列中 number 个值 0->1
M[i][random.sample(index_1,number)[0]]=0 # 随机改变序列中 number 个值 1->0
return M
x,y = A.shape
n=x
generation = y
#初始化一个有 n 中情况的解决方案矩阵
init_solve = np.zeros([n,x+y-2])
init=[1]*(x-1)+[0]*(y-1)
for i in range(n) :
random.shuffle(init)
init_solve[i,:] = init # 1 表示向下走 0 表示向右走
solve = copy.copy(init_solve)
for loop in range(generation):
Sum = [A[0,0]]*n # 用于记录每一种方案的总流量
for i in range(n):
j=0;k=0;
for m in solve[i,:]:
if m==1:
k=k+1
else:
j=j+1
Sum[i] = Sum[i] + A[k,j]
Sum_index = zip(range(len(Sum)),Sum)
sort_sum_index = sorted(Sum_index,key = lambda d : d[1] , reverse =True) # 将 方案 按照流量总和排序
Max = sort_sum_index[0][1] # 最大流量
#print Max
solve_index_half = [a[0] for a in sort_sum_index[:n/2]] # 保留排序后方案的一半
solve = np.concatenate([solve[solve_index_half],solve[solve_index_half]]) # 将保留的一半方案 进行复制 ,复制部分用于变异
change(solve,int((x+y-2)*degree)+1 ,start) # 变异
return solve[0] , Max
Draw_road
def Draw_road(road,A):
import pylab as plt
import seaborn
seaborn.set()
x , y =A.shape
# 将下移和右移映射到绘图坐标上
Road = [(1,x)] # 初始坐标
j=1;k=x;
for m in road:
if m==1:
k=k-1
else:
j=j+1
Road.append((j,k))
# print Road
for i in range(len(road)):
plt.plot([Road[i][0],Road[i+1][0]],[Road[i][1],Road[i+1][1]])
实际运行的例子
In [119]: A = Generate_matrix(4,6)
In [120]: A
Out[120]:
array([[ 10., 1., 7., 10., 8., 8.],
[ 4., 8., 8., 4., 8., 2.],
[ 9., 8., 8., 3., 9., 8.],
[ 7., 2., 5., 9., 3., 8.]])
In [121]: road , M=Max_road(A,0.1,2)
In [122]: Draw_road(road,A)
较大规模的情况
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10