
大数据时代的三大趋势和三大困境
一家公司的数字化改造应该从清晰的趋势和障碍出发,更好地规划出一条通往其所寻求业务成果的路线。考虑到这一点,以下是我们关注的三大数据趋势,以及在数字时代可能出现在企业和成功之间的三大困境。
三大趋势
1. 真实的机器学习
我们坚信,机器学习、人工智能未来很快会接管世界,至少是人类的大部分工作。然而现实正一步步向我们推进,我们发现机器学习能最有效地成为人类的助手而不是替代者。人类工作和机器学习结合才是最好的结果。
2. 从数据采集者到数据生产者
过去,企业一直专注于挖掘自己拥有的数据,并发现和收集其他组织拥有的数据。但现在,企业需要一些战略转移,有意识的创造所需的数据,用于销售新产品和服务,满足业务目标的需要。例如一家体检公司收集病人生活方式和保险公司投保条件信息,并以此为基础提供个性化的客户服务和指导。这样的公司会走得更远,针对客户的需要,有针对性的收集和提供数据。
3. 优化客户体验的新方法
在大数据领域最后的几个攻坚战之一就是提升用户的体用体验了。以现在的趋势看来,使用自然语言处理分析现有数据是个不错的办法,例如在社交媒体上的进行情感分析,会比较容易抓取到用户的好恶,从而进行产品的改进。
三大障碍
1. 数据处理的困境
数据处理一直是人们最关心的问题,数据处理的概念是为达到即将到来的GDPR法规和其他法规的要求而进行的更细粒度的控制。公司不仅需要控制谁可以访问哪些数据,也需要知道数据的来源(产销监管链),谁在拥有或进行控制,数据是否已被修改,(被该数据集所取代)和其他有关的信息管理的可靠性,安全性和问责。
2. 云管理失误多
管理和跟踪多个云环境是相当繁重的任务,随着更多的数据、应用程序和处理能力转移到云计算中,企业可以判断到这会带来一些问题。虽然乍一看,多云世界的出现没有想象中那么让人头痛,毕竟它提供了无数的机遇和挑战,但我们需要做的是仔细考虑构建云管理全球企业的好方法。
3. 自助服务的障碍
自助服务在今天非常流行,它将数据与数据分离,并让用户负责它。不幸的是,在大多数情况下,一个瓶颈出现了,这里的障碍是规模问题——如何使成百上千的用户同时使用数据。将数据从IT中分离出来并转移到用户自助模型中只是将公司转变成真正的数据驱动组织的第一步。下一个是将数据从普通业务转变为企业盈利的发动机。
有些大数据的案例仅限于我们的推测和想象,但有一些场景我们已经可以看到,例如顾客购买体验发展的成熟:一对祖父母为他们6岁的孙子购买消防车玩具作为生日礼物,然后接到新产品推介,里面包括对各年龄段儿童生日礼物的推荐。想象一下预见性分析,电力自动化为你的下一次会议做好准备,收集你需要提前完成的数字文件,订购符合会议每个人口味和健康要求的午餐等等。
在过去的四年里,大数据世界已经逐渐发展起来,但最好的和最令人兴奋的部分还在后面。重要的是要实现一个真正的投资回报率,从任何大的数据部署结果,从一个公司设置的过程中利用数据不断改进这些过程和方法,使其成为更多的数据驱动力。着眼于未来,使用能适应当前趋势,解决眼前障碍所需的工具,是任何公司穿越数字化转型旅程的最佳途径 。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10