
数据科学的处理流程
数据科学家知道把不同的理论和工具有机地结合在一起并最终形成特定的流程,进而依据这个流程完成数据分析工作。
数据科学的整个流程包括这些环节:
数据准备
数据表示
数据发现
数据学习
创造数据产品
洞见与结论
结果可视化
数据准备
数据准备虽耗时和无趣,但是至关重要,因为它决定了数据的质量。若是数据的质量得不到保证,后续所有的数据工作都会收到影响。
数据准备包括数据读入和数据清洗。
数据探索用来查看数据内容,从数字化和可视化入手,帮助我们找出数据集中的潜在信息并且确定数据分析的大致方向。
数据表示
数据表示是指选择合适数据结构存储数据。这样做有两个作用:
完成从原始数据到数据集的转化
为后续数据分析提供最优的内存消耗
数据发现
数据发现是提出假设,完成验证,从数据集中发现特定的规律和模式的步骤。
数据发现使用不同的统计方法来检验数据之间关联的显著性,通过分析同一数据集中的不同变量或者不同数据集中的交叉信息来得到确信可靠的信息。
数据学习
数据学习主要使用统计方法和机器学习算法来分析数据集。
无论一个工具有多么全能和有效,永远是使用这些分析工具的数据科学家自身的能力使它们发挥作用,才能最终得到有用的结果。
更好地了解这些工具,可以帮助科学家们更理智地选择学习方法与工具,从而得到更好的结果。
创造数据产品
数据产品是一个由数据和算法组合而成的产品。
——著名数据科学家Hilary Mason
一个数据产品是一个公司开发出来,可以用于销售给其他客户从而赚取回报的东西,这个东西几乎可以涉及方方面面。
数据产品为什么有价值?
因为数据产品给客户提供了非常有用的信息。
如今的数据产品通过高速数据处理,使用最新的算法以及并行计算等方式来获得之前人类无法获得的信息。
一个数据科学家需要挑选出结果中最有价值的相关数据(数据选择),然后把它包装成为最终的用户可以看明白的形式。
一个数据产品其实就好像是一个人人都能随身带在身边的数据分析专家,如果你需要信息的话,可以付很少量的钱来购买一些信息。
如何创造数据产品?
你需要知道你最终的客户是谁?他们的需求是什么?
选择正确的数据和算法
选择合适的数据分析工具
有用信息(洞见)的呈现。(想象力很重要)
洞见与结论
洞见和结论是让分析结果能尽量地被更多的人理解,并且能适用于更多的情况。
结果可视化
结果可视化就是让更多的观看者明白其中信息的意义。
数据探索可视化和结果可视化有很大不同,前者并不知道将会发现什么,因此需要不断尝试;后者对数据处理的目的和数据分析的结论有了深入理解和解读。
结果可视化,让数据讲故事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28