京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与区块链的爱恨情仇,一场技术界相爱相杀的爱恋
大数据时代的来临,为众多企业带来了全新的机遇和挑战。随着数据量、数据种类的增多,企业由历史数据分析渐渐过渡到基于多源、海量数据的实时分析。
我们都知道商场如战场,谁能在企业运营中做出快速、高效的分析决策,谁就能日益激烈的市场竞争中立于不败之地。
同时,区块链技术被公认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。
如果说蒸汽机释放了人们的生产力,电力解决了人们基本的生活需求,互联网彻底改变了信息传递的方式,那么区块链作为构造信任的机器,将可能改变人类社会价值传递的重要方式。
近年来,大数据在迅猛发展同时也面临着诸多的困境,区块链又以如此强势的姿态进入大家的认知,那么汹涌而来的区块链会对大数据又什么影响呢?
什么是区块链?
区块链,是比特币的底层技术架构,它在本质上是一种去中心化的分布式账本。
区块链技术作为一种持续增长的、按序整理成区块的链式数据结构,通过网络中多个节点共同参与数据的计算和记录,并且互相验证其信息的有效性。
从这一点来说,区块链技术也是一种特定的数据持久化技术。
由于去中心化在安全、便捷方面的特性,很多业内人士看好其发展,认为它是对现有互联网技术的升级与补充。
区块链的特性
区块链的定义,其具有有去中心化、不可篡改、可信任性、可追溯、全网记账等优势,具备颠覆传统行业的可能,使得相关业务公开化、透明化、公正化。
区块链在过去的2017年大数据行业的十大热词之一,总结有如下三个特性:
1、区块链是“去中心化”的
去中心化的本意是指,每个人参与共识的自由度。
他有参与的权力,他也有退出的权力。在代码开源、信息对称的前提下,参与和决策的自由度,即意味着公平。
2、区块链是公开的
在区块链中,用户随时都能见到一切,它是公开透明的。
3、区块链同时也是加密的
区块链使用强大的加密技术来维护虚拟安全。除了强有力的外部防御外,区块链没有中央数据库,因此无法被黑客入侵。
区块链对大数据的影响
从移动互联网到大数据、区块链,当今时代,技术变化的潮流势不可挡,以至于很多人一时竟难以明白和适应。
但毫无疑问,区块链正在让大数据汹涌而来。区块链的可信任性、安全性和不可篡改性,正在让更多数据被释放出来。
1、区块链使大数据极大降低信用成本
我们未来的信用资源从何而来?其实中国正迅速发展的互联网金融行业已经告诉了我们,信用资源会很大程度上来自大数据。
通过大数据挖掘建立每个人的信用资源是很容易的事,但是现实并没有如此乐观。
关键问题就在于现在的大数据并没有基于区块链存在,大的互联网公司各自垄断,导致了数据路孤岛现场。
在经济全球化、数据全球化的时代,如果大数据仅仅掌握在互联网公司的话,全球的市场信用体系建立是并不能去中心化的,如果使用区块链技术让数据文件加密,直接在区块链上做交易,那么我们的交易数据将来可以完全存储在区块链上,成为我们个人的信用资源,所有的大数据将成为每个人产权清晰的信用资源,这也是未来全球信用体系构建的基础。
2、区块链是构建大数据时代的信任基石
区块链因其“去信任化、不可篡改”的特性,可以极大的降低信用成本,实现大数据的安全存储。
将数据放在区块链上,可以解放出更多数据,使数据可以真正“流通”起来。
基于区块链技术的数据库应用平台,不仅可以保障数据的真实、安全、可信,如果数据遭到破坏,也可以通过区块链技术的数据库应用平台灾备中间件进行迅速恢复。
3、区块链是促进大数据价值流通的管道
“流通”使得大数据发挥出更大的价值,类似资产交易管理系统的区块链应用,可以将大数据作为数字资产进行流通,实现大数据在更加广泛的领域应用及变现,充分发挥大数据的经济价值。
我们看到,数据的“看过、复制即被拥有”等特征,曾经严重阻碍数据流通。但基于去中心化的区块链,却能够破除数据被任意复制的威胁,从而保障数据拥有者的合法权益。
区块链还提供了可追溯路径,能有效破解数据确权难题。有了区块链提供安全保障,大数据将更加活跃涌动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12