
解密如何成功实施商业智能项目
商务智能在各个企业中的需求越来越大,特别是这几年随着企业核心业务系统、企业资源规划(ERP)、供应链管理(SCM)和客户关系管理(CRM)的实施,使得企业已经积累了大量的运营数据,这些数据存放在各种不同的系统、不同的地域、不同的分公司或者部门,企业需要从数据中获得报表、获得信息,并不是一件容易的事情,其主要原因是数据分散在一个个信息孤岛中,手工从各个系统中查询有用的信息,然后通过手工再录入到电子表格中,需要大量的人力物力,并且由于时间的延迟、信息获得的时间和渠道不一致而导致各个部门的结果不一致,比如销售部门和财务部门经常统计的销售额不同;如何能及时、透明、准确的获得信息,从而从信息中获得知识、时刻了解企业的客户、销售、库存、物流、生产、采购、财务的状况,就需要商务智能来实现这样的分析和决策,如何成功实现商务智能,也是人们,特别是领导非常关心的话题之一。
首先,在立项前,企业就要明确知道立项的目的,要解决的问题。而不是为了数据而数据。
其次,定好了项目的目标,成立项目小组,或者指定专人研究项目的可行性,研究为达到目标所需要的人力物力以及项目的范围。从企业的内部了解企业内部的系统分布:比如系统的应用部门,数据的存储、数据库、中间件、运行平台、操作系统等。知道现在所能获得的信息、方法和手段。从项目实施的外部了解这方面的咨询厂商、产品供应商、在本行业中成功的案例。了解实现商务智能的基本技术路线、工具和实施方法论。
接下来,就是产品的选型、产品供应商的选择、咨询公司的定位等。在选型时,一定要考虑行业的经验、公司的综合实力、产品与技术的优势、方案的提供、项目实施的经验、售后服务和产品咨询的价格。
一旦选定了产品和服务商,下一步就是如何保证项目实施的成功。从应用角度出发:
第一是业务驱动,目标导向:一定要结合公司的实际,了解企业急待解决的问题,从老总最关心的业务主题开始,比如应收账款和账期、现金流、生产质量、库存或者是促销结果等。选择主题时要考虑能在短期内实现,比如在5个月或者半年让相关领导能看到结果。不要一开始就贪图大而全,其结果导致两三年看不到结果。是否能在短期实现取决与数据源的完整性和准确性、业务范围的大小,尽量先选取单一的、数据准确性比较高的数据源,比如财务数据或者生产采购数据;因为商务智能项目的基础是正确的数据,这样才能保证项目的快速上线。其次就是业务目标制定的范围要尽量小。由于商务智能系统和ERP系统在思维模式上完全不同,ERP是流程驱动,而商务智能是目标驱动,从要达到的目标出发,考虑要解决的问题,然后给问题用公式或者描述下定义,比如客户的流失分析,如何定义客户流失,是客户离开了公司或者放弃了产品叫流失,还是客户有了流失的迹象叫流失等。往往商务智能项目的需求分析和整体设计应该占到整个项目的2/3时间。
第二是商务智能项目应该是全员使用的“业务系统”:应该成为按照角色划分的应用系统,高层需要了解公司的关键绩效指标达标现状和存在的问题,也就是关键绩效指标的预警;管理层需要了解为什么发生,找到原因,调整执行的战略,对高层提出建议;分析层需要对业务进行分析和跟踪,从而对企业的运营提出建议;执行层需要了解具体执行的情况,了解自己所完成任务的状况。只有将系统在整个企业使用,慢慢将其变成一个“运营系统”,才会有生命力。
第三是系统应用的简易性:由于商务智能系统是为业务部门应用的,业务部门的需求也在不断的变化,所以该系统不是设计好固定的界面而让业务部门来应用就可以了,而是一定要让应用部门学会自己使用“傻瓜照相机”,不要所有的应用都让IT部门开发,就像使用WORD一样,会进行分析、查询和问题跟踪。
从行政角度来出发:
第一是业务部门和IT部门齐心协力:业务部门主导提出需求,而不是IT部门问业务部门有什么需求,这样一般业务部门的重视度不够,导致到系统上线了,业务部门认为项目不能满足他们的要求,需要重新修改内容,商务智能项目返工的工作量相当大,因为数据的整合需要大量的工作量。一旦需求发生变化,可能会直接影响到数据模型的改变。一般情况下,IT部门驱动的项目经常是以数据驱动,所以多将项目取名为数据仓库或者决策支持系统,目标是先将企业的数据整合起来,然后任何应用都可以从数据仓库中获得,这样也就自然会想到企业级数据模型。企业级数据模型居然重要,但是一定要考虑到可行性和现实。在一般情况下,企业特别是大型企业的数据整合需要三、四年的时间,等数据整合完了,业务系统又发生了变化,或者需求完全发生了变化,IT界人员流动非常频繁,没等项目上线,做项目的人已经离开了公司或者项目组,如果文档写得不到位,这样数据的接口也不知道,其结果就成为一个好看而不能实用的企业数据存储系统。如果是业务部门驱动,往往是以业务应用为主,但是往往会只考虑到自己部门的应用而忽视了整体架构的设计,从而当这应用做完后,数据结构不能扩展成企业级的应用,为了消灭信息孤岛而人为的又产生了新的信息孤岛。
第二是商务智能项目是一把手工程:在项目实施过程中,如果部门相互独立,相互协作得不到保证。如果是IT部牵头,业务部应该有专人介入。否则,由于业务繁忙,业务部门的人员往往对项目的重视程度不够,很少发表意见或者参与项目决策,导致到项目的失败,所以一定要企业的一把手出面,各个相关部门有专人参加,参加的人对企业的业务比较熟悉,而且能领会领导的意图。
第三是要加强业务培训和技术培训:商务智能项目也分为三个阶段:一是前期的培训洗脑,让相关人员理解为什么要做该项目,能解决什么问题,让相关人员进入自己的角色,二是中期的咨询:通过对公司业务问题的诊断、调研,了解企业需要解决的首要问题,然后了解企业IT建设的现状,设计整体的架构;三是项目的实施。项目前期需要需求引导培训,项目中间需要对项目组人员进行技术工具培训,以便项目上线后,公司会有专人维护,因为商务智能项目是一个过程,根据业务需求,实时进行项目的开发。项目上线后要对业务人员进行培训,特别是教会业务人员学会工具的利用,对自己的需求自行开发。
从技术的角度出发:
第一是“想大做小”:要对项目的整体规划、技术架构、分步实施进行规划,是否需要ODS,数据仓库的逻辑架构和物理架构的设计,数据集市的结构等都要进行认真的设计。对于业务驱动的系统容易出现的问题是初期的数据整合很难拓展为企业的数据仓库,所以在设计时,要对系统的整体架构加以认真的设计。
第二是数据质量的控制: “垃圾进垃圾出”,商务智能项目最重要的还是数据,如果在数据仓库或者数据集市中的数据有问题,其结果也难以保证期真实性,这样就要求数据质量的完整和准确。如何保证数据的高质量,就需要有一个数据质量控制的工具,而不仅仅是通过ETL(数据的抽取、迁移和加载),而还需要数据的质量控制。
第三是“三分段的设计思想”:在数据仓库的设计时,要考虑将数据仓库和业务系统相对隔离,将数据仓库和分析应用相对隔离,因为当前的业务系统经常会升级或者更新,不要因为分析应用需求的变化或者业务系统的变化,将原来建立的数据仓库推到重建,一定要保护企业的投资回报。
要想成功实施商务智能项目,是一个一把手工程,需要业务部门和IT部门的配合,大处着想,小处着手,尽量做到简单易用,让业务部门学会分析应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25