
大数据如何影响卫星产业
视频点播服务商(如Netflix和Amazon Prime)之间竞争加剧给卫星运营商造成明显挑战。此外,消费者对付费电视的大量选择也对运营商降低服务价格形成了压力。
尽管出现这些问题,卫星行业仍然在持续发展。
Dataxis公司发现在2016年第二季度到2017年第二季度这一年间,直播到户(DTH)卫星广播市场的用户数量增加了700万,从2.38亿增长到2.45亿,这与有线电视用户数量的减少量大致相当。一颗卫星可以通过大数据来保持其活力,卫星运营商已经使用人工智能(AI)-更具体的来讲是机器读取-来预测和分析多年的数据,来帮助他们更好的细分市场和创建更多定制化的订阅套餐。随着视频点播和多屏幕服务需求的激增,运营商可以通过多个连接的设备终端获得增长的收视率数据的数量和种类。
尽管大数据为卫星运营商带来了新的机遇,但变化也随之出现。
通用数据隐私条例 (GDPR)将于2018年在整个欧盟(EU)生效,这将使得从电视运营商的收视率数据中分析出一些具有指导性的结果更具吸引力(例如减少对第三方数据的依赖)且更具挑战性(例如法规要求的日渐严格)。
GDPR中规定了新的义务。 消费者的授权是必须有的,运营商必须让他们的用户了解到,他们会在流程的所有步骤中收集数据。
GDPR有可能不仅仅影响欧洲的付费电视观众。 事实上,它还有望成为世界其他地区立法的模板。
那么一旦GDPR通过,收集数据将会变得有多难?虽然消费者已经习惯在互联网上提供数据,但通常只是在社交软件这种免费服务上。
客户也许很不情愿向一个已经收取每月订阅费用的卫星运营商来提供这些信息。
但从另一方面看,卫星运营商已经经营很长时间了,因此他们通常会得到用户的信任,并且与新进入视频点播这种付费电视市场的服务提供商相比,他们可能更容易得到用户关于收集数据的认可。
在涉及利用大数据方面,卫星运营商可以采用几种不同的方法。具有半人工智能的内容获取、安排和分发工具优势的“内容效率预测”模型正日渐流行。
特别是,内容获取策略可以建立在预测模型和投资收益率(ROI)分析上。
这些模型与传统的推荐模型不同,因为它们考虑的是观众群,而非特定的观众(或家庭)。
这些模型的核心是内容和内容相似度的向量表示。关于内容的向量表示有很多方法,包括内生和外因,这可以为运营商带来显著的成本节约或额外的服务收入。
人工智能的模型具有学习的能力,从而使得在提出建议和提高内容效率上更加准确,尤其是在一段时间的实践以后。
在今天的互联世界中,运营商必须充满活力并快速地适应变化。 人工智能允许运营商通过改变算法来不断提高其服务质量以适应消费者的行为。
未来卫星运营商和大数据的会如何? 大数据算法正在发展。
在过去的几年里,我们看到了人工智能领域的传统模式与深度学习、机器学习相结合的重大改进,我们也看到了计算能力和数据访问(连接/数据库)的交互作用。
在这种情况下,人工智能的全部功能可通过CPU性能、更好的算法以及实时访问大型数据库来实现。
这些元素的聚合为市场和消费者分析提供了新的范例。
数据一直是卫星业务的一部分,但现在正在发生的变化是对行为的反应越来越接近实时了。
分析行为的老方法可能会有长达数月的滞后期,而对于那些有退出服务想法的客户而言,可能在此期间已经做出决定。
最终,这些进步正在帮助全球的卫星运营商更好地利用大数据,以更具意义的方式了解他们的用户(即提供有针对性的内容)并开辟新的盈利计划,特别是与定向广告相关的计划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14