
Python callable()函数用法实例分析
本文实例讲述了Python callable()函数用法。分享给大家供大家参考,具体如下:
python中的内建函数callable( ) ,可以检查一个对象是否是可调用的 。
对于函数, 方法, lambda 函数式, 类, 以及实现了 _ _call_ _ 方法的类实例, 它都返回 True.
>>> help(callable)
Help on built-in function callable in module __builtin__:
callable(...)
callable(object) -> bool
Return whether the object is callable (i.e., some kind of function).
Note that classes are callable, as are instances with a __call__() method.
1》函数是可调用的
>>> def add(x,y):
... return x+y
...
>>> callable(add)
True
2》类和类内的方法是可调用的
>>> class C:
... def printf(self):
... print 'This is class C!'
...
>>> objC=C()
>>> callable(C)#类是可调用的,调用它们, 就产生对应的类实例.
True
>>> callable(C.printf)
True
>>> callable(objC.printf)
True
3》实现了__call__()方法的类实例是可调用的
>>> class A:
... def printf(self):
... print 'This is class A!'
...
>>> objA=A()
>>> callable(A) #类是可调用的,调用它们, 就产生对应的类实例.
True
>>> callable(objA) #类A没有实现__call__()方法,因此,类A的实例是不可调用的
False
>>> class B:
... def __call__(self):
... print 'This is class B!'
...
>>> objB=B()
>>> callable(B) #类是可调用的,调用它们, 就产生对应的类实例.
True
>>> callable(objB) #类B实现了__call__()方法,因此,类B实例是可调用的
True
4》lambda表达式是可调用的
>>> f=lambda x,y:x+y
>>> f(2,3)
5
>>> callable(f)
True
其它的,像整数,字符串,列表,元组,字典等等,都是不可调用的,如下:
>>> callable(2)
False
>>> callable('python')
False
>>> l=[1,2,3]
>>> callable(l)
False
>>> t=(4,5,6)
>>> callable(t)
False
>>> d={'a':1,'b':2}
>>> callable(d)
False
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02