京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的信息安全和未来展望
随着高级可持续性攻击的出现以及恶意软件的复杂性与日俱增,企业急需一种突破传统信息安全保障模式的、灵活的技术和方案来应对未来不断变化的安全威胁。大数据彻底的改变了信息安全行业,基于大数据分析的智能驱动型安全战略将帮助信息安全从业人员重获警惕性和时间的优势,以使他们更好地检测和防御高级网络威胁。
大数据时代信息安全面临挑战
在大数据时代,无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络使得互联网时时刻刻都在产生着海量的数据。随着产生、存储、分析的数据量越来越大,在这些海量数据背后隐藏着大量的经济与政治利益。大数据如同一把双刃剑,在我们享受大数据分析带来的精准信息的同时,其所带来的安全问题也开始成为企业的隐患。
1、黑客更显著的攻击目标:在网络空间里,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的攻击成本,增加了其“收益率”。
2、隐私泄露风险增加:大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
3、威胁现有的存储和防护措施:大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
4、大数据技术成为黑客的攻击手段:在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
5、成为高级可持续攻击的载体:传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
6、信息安全产业面临变革:大数据的到来也为信息安全产业的发展带来了新的契机,还没有意识到这场变革的安全厂商将在这场变革大潮中被抛弃。大数据正在为安全分析提供新的可能性,在未来的安全架构体系中,通过大数据智能分析有效的将原来分割的安全产品更好的融合起来,成为不同的安全智能节点,这将是在大数据时代安全产业需要研究突破的重点。
大数据安全未来趋势展望
据MacDonald预测,到2016年,40%的企业(银行、保险、医药和国防行业为主)将积极地对至少10TB数据进行分析,以找出潜在危险的活动。然而,供应商的产品格局却无法在短期内进行转变。现在,企业通常依赖于SIEM系统来关联和分析安全相关的数据,MacDonald表示目前的SIEM产品无法处理这么大的工作量,大多数SIEM产品提供接近实时数据,但只能处理规范化数据,还有些SIEM产品能够处理大量原始交易数据,但无法提供实时情报信息。
Gartner公司分析师表示,使用“大数据”来提高企业信息安全不完全是炒作,这在未来几年内这将成为现实。大数据将为安全团队带来新的工作方式,通过了解大数据的优势、制定切合实际的目标以及利用现有安全技术的优势,安全管理人员将会发现他们在大数据进行的投资是值得的。
RSA大中国区总经理胡军表示,“大数据将带动安全行业方向性的改变,安全与数据互相影响,未来共同促进发展。现今的安全需要更全面和广泛的可视性,敏捷的分析,可采取行动的情报和可扩展的基础设施。”
我们可以看到,大数据安全已经成为不可阻挡的趋势。在未来,不论是从商业需求角度,还是产业技术角度,大数据安全都将成为业界关注的热点。而在这场大数据安全的盛宴中,也必然会出现新老更替、推陈出新,这一切就让我们拭目以待吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05