
大数据正掀起一场商业变革
时下,一场以大数据为核心的商业变革正在兴起。从搜索引擎、社交网络、电子商务平台等IT企业,到电信运营商、航空公司、物流企业,再到医院、超市、饮料制造等传统企业,由大数据引发的商业变革如火如荼。众多的企业实践和研究案例表明,数据分析在广度和深度上的拓展能够帮助企业增强竞争力,提升盈利能力。不过大数据对经济的影响绝不仅仅停留在微观企业层面和商业领域,它在经济信息统计和指导经济政策制定等方面也将发挥重要作用。
大数据让信息统计更快、更准、更广、更细
随着计算机和互联网的普及和电子商务的发展,越来越多的经济行为被记录下来。传统意义上,经济统计一般只细分到产品、行业层面,通常以月为频率;条形码出现后,记录可以具体到每一次交易行为;而对于淘宝、亚马逊等网上购物平台,能被记录的则不仅仅是交易行为,还包括消费者从搜索、对比、选择、购买、一直到售后评价等一系列操作都会被记录。事实上,电信、医疗、物流等其他行业,都在实现更详尽的记录。
传统的经济统计工作在未来将大数据化——以往生产统计更多地停留在行业层面(或局限于规模以上企业),而未来可能是针对所有企业;传统的消费统计主要基于抽样调查,而未来可能具体到每个家庭或个人;传统的价格统计(比如通常所说的“CPI指数”)中仅包含千种商品、涉及几万个调查销售网点,而今后可能是几万种商品、所有的在线销售商和大部分线下销售网点。随着大数据技术的成熟,“样本即总体”将成为趋势,抽样变得越来越不重要。
相对于传统经济统计来说,大数据引发的变革主要在四个方面:时效性提高,记录更加准确,覆盖的经济行为面更广,对单次经济行为的记录更加精细。简单地讲就是:更快、更准、更广、更细。
麻省理工大学斯隆管理学院的两位教授正在主持一项名为“百万价格工程”的研究计划。他们通过搜集互联网上不同国家各种零售商品的价格数据,编制了各国的“在线价格指数”。
谷歌和百度先后推出了基于互联网搜索频率的“谷歌指数”、“百度指数”,将互联网用户对特定关键词的搜索量通过统计学方法编织成指数,用来反映大众对于该关键词关注度的变化趋势。
阿里巴巴推出了基于淘宝电商平台的“iSPI”系列指数,这些指数以网络交易的实时数据为基础,能够反映食品、烟酒及其用品、衣着等十个商品和服务类别的网络零售价格和交易量的变化趋势;可以辅助洞悉通货膨胀、经济增长、居民消费等宏观经济指标。
大数据能指导经济政策制定
传统经济统计数据有两个缺陷:一是存在滞后性,二是低频率。而大数据可以在这些方面作出改进。例如:各国消费者物价指数(CPI)的发布一般都存在滞后期,以我国为例,通常要等到下个月的9号左右才发布上月CPI数据;而“在线价格指数”是对市场价格的实时跟踪和汇总,不存在滞后性,从而能为货币政策提供更为及时的信息。
同时,在线价格指数可以做到以天为频率、甚至更高频率,从而能用来更细致地分析通货膨胀规律和定价行为。还有研究发现,该指数与资本市场走势具有相关关系。
另外,传统经济统计的思想是以样本表征总体,可能出现偏差。而大数据时代的经济信息统计包含的样本量大,甚至可以覆盖全部总体,从而包含更多的信息量。例如,通过对比在线价格指数和官方CPI可以发现:美国的在线价格指数与官方发布的CPI契合地很好;而对于阿根廷,在线价格指数系统性地大幅高出官方发布的通货膨胀率。
在行业层面,大数据也能发挥作用。笔者曾在一篇学术论文中证实:互联网搜索引擎频率数据对中国汽车市场的需求量具有很强的预测力;笔者构建的基于互联网搜索量的“中国汽车需求先导景气指数”不仅能够提高销量预测的精度,还能够增强预测的时效性。
另外,随着大数据相关技术的成熟,公共部门和私人企业过去积累的大量“垃圾”数据有可能重新焕发光彩。比如用微观居民和企业用电量数据指导智能电网建设、用交通事故和犯罪数据指导警力布局、用消费和税收数据指导收入分配、用客流量数据指导铁路和民航调配、用互联网关键词传播数据进行流行病预防等等。
补充而非替代
需要指出的是,大数据之于传统经济统计,是补充,而非替代。基于抽样、调查、汇总等程序获得的数据仍将在经济分析和政策制定中发挥重要的作用。横向来看,传统统计方法在经济增长、税收、贸易、收入分配等领域的统计上具有主导优势,而大数据在物价、通货膨胀、失业率、消费等方面的统计上更具有优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10