京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中zip()函数用法实例教程
本文实例讲述了Python中zip()函数的定义及用法,相信对于Python初学者有一定的借鉴价值。详情如下:
一、定义:
zip([iterable, ...])
zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list unzip(解压)。
二、用法示例:
读者看看下面的例子,对zip()函数的基本用法就可以明白了:
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b)
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c)
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped)
[(1, 2, 3), (4, 5, 6)]
对于这个并不是很常用函数,下面举几个例子说明它的用法:
1.二维矩阵变换(矩阵的行列互换)
比如我们有一个由列表描述的二维矩阵
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
通过python列表推导的方法,我们也能轻易完成这个任务
print [ [row[col] for row in a] for col in range(len(a[0]))]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
另外一种让人困惑的方法就是利用zip函数:
>>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> zip(*a)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
>>> map(list,zip(*a))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
这种方法速度更快但也更难以理解,将list看成tuple解压,恰好得到我们“行列互换”的效果,再通过对每个元素应用list()函数,将tuple转换为list
2.以指定概率获取元素
>>> import random
>>> def random_pick(seq,probabilities):
x = random.uniform(0, 1)
cumulative_probability = 0.0
for item, item_probability in zip(seq, probabilities):
cumulative_probability += item_probability
if x < cumulative_probability: break
return item
>>> for i in range(15):
random_pick("abc",[0.1,0.3,0.6])
'c'
'b'
'c'
'c'
'a'
'b'
'c'
'c'
'c'
'a'
'b'
'b'
'c'
'a'
'c'
这个函数有个限制,指定概率的列表必须和元素一一对应,而且和为1,否则这个函数可能不能像预想的那样工作。
这里需要稍微解释下,先利用random.uniform()函数生成一个0-1之间的随机数并复制给x,利用zip()函数将元素和他对应的概率打包成tuple,然后将每个元素的概率进行叠加,直到和大于x终止循环
这样,”a”被选中的概率就是x取值位于0-0.1的概率,同理”b”为0.1-0.4,”c”为0.4-1.0,假设x是在0-1之间平均取值的,显然我们的目的已经达到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04