
企业向机器学习转型所需遵循的五大步骤
导读:
如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备。
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。
原文翻译:
假如你想修个新房,你不但得购买新建材,还得雇佣熟练的建筑工人,才能把房子修起来。首席信息官们(CIO)要想推行机器学习技术,从而在没有人类直接干预的情况下,对业绩加以分析与提升,他们也得遵循同样的规则。企业IT云服务公司ServiceNow的一项最新调查显示,大多数CIO都因为缺乏所需的人才、数据质量与预算,而无法充分利用这种技术。若你的企业即将踏上机器学习的征程,那么,要让投资物有所值,你必须遵循五大步骤。
这五大措施应尽快采取,因为说不定,大家期盼已久的机器学习时代很快就要降临了。效仿人类智能的机器虽然被炒得热火朝天,但计算机科学早已经迎头赶上。如今,机器学习技术高居新兴科技技术成熟度曲线(Hype Cycle for EmergingTechnologies)的顶点,这意味着,它已经足够成熟,可以激发更加广泛的兴趣了。换言之,你的竞争对手们也在投资机器学习呢。
最近,《全球CIO观点调查》(Global CIO Point of View Survey)向500名CIO发出了问卷。调查结果显示,企业都在为这种变革性的技术的普及摩拳擦掌,以实现自动化决策。近九成企业已经不同程度地用上了机器学习,大部分依旧处在战略开发或试水阶段。然而,机器学习的潜力仍未完全释放。在大部分企业,很多决策仍需要人类插手。只有8%的受访者表示,其机器学习战略已经相当或高度完备,相比之下,认为自己企业物联网战略相当或高度完备的占到35%,数据分析战略对应的比例则达65%。
根据麦肯锡(McKinsey)的一项调查,为实现机器学习方面的数据与分析目标,最重要的挑战有这样三个:
1)支持数据与分析活动的企业架构;
2)行之有效的技术基础设施;
3)管理层的参与。该研究还宣称,能够有效驾驭这三点的企业将能创造出显著的价值,并实现自身的差异化;办不到的企业,则会日益陷入劣势地位。
要捕获更大的价值,企业要做的不仅仅是投资于技术。对企业架构或流程的改变也必不可少,这其中包括对待人才的态度、IT管理与风险管理。要取得进步,企业必须遵循以下五个步骤:
一、改进数据质量
在机器学习的普及过程中,一个常见的障碍就是保障数据质量。劣质数据会导致机器做出劣质决策,从而增加风险。CIO要考虑实施恰当的解决方案,简化数据维护,从而加速向机器学习转型。第一步就是整合冗余或预制的IT工具,将它们变成单一的数据模型。
二、树立价值实现方式
将所有技术目标的商业价值明确表述出来,继而确定这些目标的最佳实现方式。这包括审视已有流程,找到最能得益于自动化的非结构化工作模式。知道了碎片化数据都在哪里,你也就知道了如何用自动化实现生产效率的提升。
三、创造最优客户体验
机器学习带来的自动化可以促进运营效率,但不要忘了,它也能(在不牺牲准确度的前提下)加速决策,改进客户体验,从而提高投资回报率。先设想一下你想创造的客户体验,然后在商业流程之中,找到最能提升客户体验的元素,加以重点投资。机器学习使企业或机构能够针对每一位顾客,度身定制相应的广告、呼叫中心的互动,乃至产品或服务,以及预测顾客接下去的需求。
四、设定指标并加以衡量
CIO们深知机器学习的价值,但高管团队和董事会其他成员可能就不清楚了。因此,在着手实施之前,CIO们必须树立预期,设置成功指标,并准备好充分的商业依据,在申请款项时,随时呈递给领导层。在实施机器学习技术、收获智能自动化的益处的同时,这些衡量指标也得随时调整
五、理解企业文化将受到的影响
在企业引入机器学习的同时,雇员的角色也将发生改变,这就需要CIO们调整雇佣与培训过程。这个不难,因为它所需的技能组合,包括数据科学、工程学、数学和批判性思维在内,就是云时代的必备技能组合。这种转型很可能给某些雇员造成不适,因此,请务必使机器学习的价值转化到他们的日常工作之中。机器并未接管企业,它们将雇员从繁琐的手动操作中解放了出来,使员工专注于更加战略性的项目。
但这种不适的感受,CIO们也有可能面临。他们的角色也需要不断演变,从维持技术层面的正常运转,保障企业运营,到以高管的身份与企业各个层面广泛互动,因此,其战略重要性也将迈上新的台阶。
企业要实现机器学习的投资回报,就离不开规划与严格的贯彻执行——同时参照技术转型的速度、其对雇员日常工作的影响,对雇员做出相应的调整。遵循上述五个步骤,这一转型就会格外顺畅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28