
大数据使一个新时代应运而生
在“大数据”趋势的驱动下,企业具有更大规模的收集和处理数据的能力,越来越广泛的信息加速了各行各业决策的速率和准确率。而大数据的“大”,已成为存储业界目前所面临的严峻挑战。据IDC预测,到2015年,大数据技术和服务市场将从2010年的32亿美元增长到169亿美元,年复合增长率(CAGR)达到39.4%,几乎是整个信息和通信技术市场年复合增长率的七倍。快速的数据流转,动态的数据体系,以及越来越多样化的数据类型,面对如此海量的数据规模,尽管业界的专业人士不断的推崇“大数据”,但其所带来的复杂程度和处理难度,使得企业不得不去重新考虑存储基础架构的问题。
随着企业不断寻求通过各种方法创新并为客户构建更好的解决方案,他们面临的一个最大挑战是,如何使真正对社会具有深远意义以及可持续影响力的创新解决方案实现商业化。据 IDC 调查,到2014年,绝大部分数据将是非结构化数据。因此,在数据大爆炸或大数据的背景下,我们需要具备发挥非结构化数据巨大潜力的能力,以便生成新的可持续业务、从现有资产获取经济价值并提高用户生产效率。
大数据洞察,基础架构先行
大数据数量庞大,格式多样化。大量数据和信息由家庭和办公场所的各种设备生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业带来严峻的数据管理问题。
IDC认为传统的基础架构不能满足大数据需求和挑战。支持大数据部署的架构必须可以动态调整,并具备以下主要特性:
按需提供的容量和可扩展性,使基础架构能够在必要时根据容量和性能扩展或缩减规模。
维持“始终在线”的环境以及防止计划外停机的故障恢复能力。
内置数据管理,并且能够在每个处理阶段以及每个后处理常规运行阶段管理数据保护、监管达标、处置和同化。
针对大数据的容量需求,存储虚拟化是目前为止提高容量效率最重要最有效的解决方案,它为缺乏这些能力的现有存储系统拓展了自动分层和精简配置等存储效率的工具。拥有了虚拟化存储,便可以将来自内部、外部和多厂商存储的结构化和非结构化数据的文件、内容和块存储等所有的数据类型,整合到一个单一的存储平台上。当所有存储资产成为一个单一的存储资源池时,自动分层和精简配置功能就可以扩大到整个存储基础设施,从而可以轻松实现容量回收和利用最大化,甚至达到重用现有资产以延长使用,显著提高IT灵活性和容量效率,以满足非结构化数据增长的需求。目前,借助HUS中型企业可以在不影响性能的情况下能够扩展系统容量达到近3PB,自动更正性能问题,通过动态虚拟控制器实现快速预配置。此外,通过VSP的虚拟化,大型企业可以创建接近四分之一EB容量的存储池。
针对非结构化数据,传统文件系统中有限的索引节点总数导致文件系统可以容纳的文件、目录或其它对象的最大数量受到限制。而HNAS和HCP使用基于对象的文件系统,这使它们能够扩展到PB级,以及数十亿的文件或对象。位于VSP或HUS顶部的HNAS和HCP网关可以充分利用模块存储的可扩展性,同时享受到通用管理平台Hitachi
Command Suite带来的好处。HNAS和HCP为大数据文件和内容构建起了相应的架构。
除了可扩展性,大数据必须能够不受干扰地持续扩展并具有跨越不同时代技术的迁移能力。数据迁移必须保持在最小范围,且在后台完成。大数据应该只需要复制一次便可以恢复可用性;通过版本控制来跟踪变更,而不是为大数据发生的每一个变更备份整个大数据。大数据太大而无法整体备份。整个HDS的产品系列均可以实现数据的后台移动和分层,也可以增加VSP或HUS块数据池、HNAS文件系统或HCP租户的容量,并自动在新的容量中调整数据。旧的文件系统与块数据存储设备不支持动态扩展。为了使用新的存储容量,这些旧系统中的数据不得不从旧的块数据存储或文件系统中重新加载到新的存储容量中。
不论企业规模大小,信息过载都是长期以来难以解决的问题。企业需要高度集成的基础架构堆栈,以便统一地对所有来源的大数据进行汇聚、访问管理、分析和交付。这需要基础架构能够管理和理解信息。根据及时、相关、全面、准确的信息而非猜测来采取行动,企业也会因此赢得竞争优势。反之,则会在浩瀚的信息中受制于繁杂的数据、拘泥不前。
三步走,轻松驾驭大数据
基于对云计算和大数据的深入研究,HDS提出了三步云战略,即基础架构云、内容云和信息云。三步云战略基于企业现有的IT设施,为企业的所有数据提供单一的虚拟化平台。其中基础架构云目的为提供动态基础架构,以实现支持所有数据的单一平台。而内容云则基于这一单一平台,借助智能工具,实现对所有类型数据的索引、搜索和发掘。让数据可以更容易地被发现、共享并且重新利用,因而也会变得更有价值。在信息云中,和大数据会更加关联,让各种信息分析工具和流程与底层基础架构完美集成。连接不同的数据集,揭示其中的规律,以为企业用户提供有价值的信息和商业洞察,帮助客户应对在医疗、生命科学、能源研究、社会基础设施等领域的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28