京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.引言
Hadoop提供了一个基于HDFs的简单数据库HBase,它的设计思想和数据模型都与Google开发的模型简化的大规模分布式数据库BigTabIe极为相似。HBase不支持完全的关系数据模型,只为用户提供了简单的数据模型,让客户来动态控制数据的分布和格式。从数据模型角度看,HBase是一个稀疏的、长期存储的(存在硬盘上)、多维度的、排序的映射表。这张表的索引是行关键字、列关键字和时间戳。每个值是一个不解释的字符数组,用户需要自己解释存储的字串的类型和含义。这种模型具有很大的灵活性,通过仔细选择数据表示,用户可以控制数据的局部化。但是这种灵活性的代价就是不支持完全的关系数据模型,这导致传统的数据存储格式无法应用于HBase。Google自身的GFS是为网页搜索功能量身定做的,采用BigTable的简单数据模型可以以字符串形式灵活存储网页的URL、时间戳等信息。HDFS的设计完全借鉴了GFS的思想,因此从目前的版本来看,HDFS对网页搜索具有较好的支持,但是对于使用传统的关系数据模型的产品来说,HDFS并不是一个很好的选择,因为它不能提供传统的关系数据库的相关功能。如上所述,以Hadoop为例,目前的开源解决方案并不完全适用于某公司的新产品需求,因此我们需要参照现有解决方案,设计符合自身需要的新方案。
2.DDF的数据划分策略
面对大量的异构的用户数据,我们有必要对数据进行划分,以期得到更好的查询性能。
数据划分策略可分为垂直数据划分(Horizontal panition)和水平数据划分(VerticaI partition),在DDF中同时采用了这两种划分策略。垂直数据划分是按照功能划分:
(1)首先把对象数据、查询数据和其他数据划分到不同的数据表中(数据库的表)。
(2)对于对象数据,由于是按对象类型(Object type)访问的,那么我们可以进一步按照对象类型进行垂直划分,把不同类型的对象数据划分到相应的数据表中。
(3)对于查询数据,在目前的研究阶段,也将其按照对象类型进行垂直划分,存储到相应的数据表中。
另外,采用对象的全局标识(UID)的哈希值(Hash)进行水平划分,从而将对象数据划分到不同的数据节点(Datanode)的策略,需要面对数据迁移的问题,即当增加新的数据节点时,如何确保原有数据节点上的数据不进行或者尽量少进行迁移。
3.DDF的数据存储策略
DDF借鉴了HDFS的设计思想,在架构中引入了数据节点的概念,整个数据存储策略的设计理念如下。
(1)每个数据划分只可能存放在同一个数据库中,不允许一个数据划分分裂存放在多个数据库的情况出现。但是,具有相同数据对象类型的不同划分可以存放在不同的数据库中。
(2)允许不同类型的数据(如对象数据和查询数据)采用不同的划分策略。
(3)概念层次上的划分和存储层次上的数据库是一个多对多的关系,也就是说,我们甚至可以将所有的划分存放在同一个数据库内。这种极端情况同样是被允许的。
(4)当我们将一个划分指定给一个数据库时,它们的对应关系应被记录,这样在查询数据时可以定位到正确的数据库。
4.DDF的节点划分策略
DDF的节点划分策略是建立在数据划分和数据存储策略的基础之上的,节点划分策略从应用层面上描述了DDF各节点的功能。
对于收到的远程更新和查询操作的请求,调度节点必须进行分析,以判断这些操作的作用域。如果操作与当前位置的数据无关,那么这些更新和查询操作会被拒绝。数据节点则应具有以下功能:
(1)存储数据。
(2)处理索引相关的请求。
(3)处理查询请求。
(4)负责部分对查询结果进行分页的功能。
(5)创建并管理集合对象(对缓存的查询)。
(6)负责对过期数据进行处理,这包括删除与过期数据相关的对象和索引。
数据节点本身并不关心数据的位置问题,调度节点应该关心数据所处的位置。数据对象的全局标识符决定了它应该位于哪个位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27