京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中的全局变量用法分析
本文实例分析了python中的全局变量用法。分享给大家供大家参考。具体分析如下:
Python是一种面向对象的开发语言,在函数中使用全局变量,一般应作全局变量说明,只有在函数内经过说明的全局变量才能使用,这里就来介绍下Python全局变量有关问题。
首先应该说明的是需要尽量避免使用Python全局变量。不同的模块都可以自由的访问全局变量,可能会导致全局变量的不可预知性。对全局变量,如果程序员甲修改了_a的值,这时可能导致程序中的错误。这种错误是很难发现和更正的。
全局变量降低了函数或模块之间的通用性,不同的函数或模块都要依赖于全局变量。同样,全局变量降低了代码的可读性,阅读者可能并不知道调用的某个变量是全局变量。
但是某些时候,Python全局变量能够解决局部变量所难以解决的问题。事物要一分为二。 python里面全局变量有两种灵活的用法:
gl.py:
gl_1 = 'hello'
gl_2 = 'world'
在其它模块中使用
a.py:
import gl
def hello_world()
print gl.gl_1, gl.gl_2
b.py:
import gl
def fun1()
gl.gl_1 = 'Hello'
gl.gl_2 = 'World'
def modifyConstant() :
global CONSTANT
print CONSTANT
CONSTANT += 1
return
if __name__ == '__main__' :
modifyConstant()
print CONSTANT
1 声明法
在文件开头声明Python全局变量variable, 在具体函数中使用该变量时,需要事先声明 global variable,否则系统将该变量视为局部变量。 CONSTANT = 0 (将全局变量大写便于识别)
2模块法(推荐)
推荐!
gl.py:
gl_1 = 'hello'
gl_2 = 'world'
在其它模块中使用
a.py:
import gl
def hello_world()
print gl.gl_1, gl.gl_2
b.py:
import gl
def fun1()
gl.gl_1 = 'Hello'
gl.gl_2 = 'World'
def modifyConstant() :
global CONSTANT
print CONSTANT
CONSTANT += 1
return
if __name__ == '__main__' :
modifyConstant()
print CONSTANT
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05