京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【数据质量】--指标治理的三个步骤及必要条件
“同名同义”、“同义同名”、“异名异义”,三个词,即是指标治理的三个步骤。“由上推下,由小及大”是内在逻辑。在展开说明之前,我们先全盘阐述数据治理的范畴和逻辑关系。
数据治理的范畴和逻辑关系
数据治理,即为了提升数据质量,我们需要从指标、人、工具、数据源四方面着手。在我看来,指标治理是最显性也是最优先的。以指标治理为核心(这是决策层最有体感的部分),才能形成从上至下的压力,进而将人的意识和习惯、工具的应用和维护、数据源的扩展和萃取三部分的工作可持续地做好。所谓“由上推下”。
又一个大前提需要说明:指标治理是有范围的,并不能武断地进行全公司或者全事业部的指标统一;建议是先在具体部门或者业务线中,做好指标治理工作,进而寻求更大范围统一的可能性。所谓“由小及大”。
指标治理的步骤说明
有了上面的认知,我们对指标治理步骤展开说明。归纳为下图的内容。
首先,我们追求指标的同名同义。从两个方面来达成:
第一,当我们遇到两个相同名称的指标,数值却不相同时,需要做检查,若是计算错误就及时修正,若是口径不同,则将两个名称区别开,记住一定要规范命名(规范命名的方式在下一篇中会说明);
第二,当我们在做数据产品或者研究时,需要定义某种指标的时候,要优先与现有的指标进行对照,如果重叠,在不产生理解歧义的情况下,继承现有指标命名;若继承名称不合适或者不存在类似的指标,则采用规范的命名方式,将自己所使用的指标与现有的指标区别开。
当然,在同名同义阶段,有一种最讨巧而实用的方式,就是都按命名规范,先定义成与其他指标不同名字,并在产出结果中给出详细的口径说明。
接着是同义同名。在这个过程中,需要由指标治理的负责人,有规律地对各业务人员和分析师在使用的指标进行遍历检查。发现有计算口径或者业务含义相同或接近的指标,进行名称上的整合。需要非常注意,并不是所有意义相同或者相近的指标都要整合,我们千万不能一根筋做事情。比如完全处在两个业务线或者两种主题下的指标,就没有必要非得统一成一个名称。这反而导致本业务线内的指标名称体系的混乱。
最后,是追求异名异义。为什么说“追求”?因为这个状态只要去接近就可以,而没必要真的达到。我们真正要达到的是“不存在同名异义,而存在异名同义”。
首先是人的意识。不管是管理者、决策者还是执行者,都要具备数据质量意识,在日常接触数据产出时,脑中始终有所“戒备”,养成“遇数三问”的好习惯。
其次,需要有指标维护的工具,可成为指标平台的工具,由指定人员进行管理和维护。在这个工具上,数据使用者能方便的查阅具体指标的名称、计算口径、样例代码、负责人、变更历史等信息。
接着,指标变更需要有一定的流程,尤其是如上篇所说的“评价流”中的指标。应该有一个上至决策层的审批流程,毕竟这是决策层重要的判断依据。
最后,也是最重要的,分析师或者其他数据结果的生产者,一定要具备良好的习惯(也可以上升为职业素养):
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27