京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据时代”的数据挖掘
大数据是什么?有何神奇之处?
大数据是指一切都数据化了,我们平常上网浏览的数据,我们的医疗、交通、购物数据,统统都被记录下来,这就是大数据的起源。在这个时候,我们每个人都成了一个数据产生者,数据贡献者。大数据的神奇之处在哪里?从某种意义上来讲,你们可能只是安装了一个游戏并允许它提取你的GPS位置,但这就把你是不是一个同性恋,是不是一个高消费者,之类的信息暴露给了研究机构。通过大数据的分析,我们甚至能够在很大层次上精确地知道你是谁。
您之前也提到了大数据时代已经到来,所以企业、商家对数据的挖掘也在深化。那么什么样程度的数据挖掘才不算是过度挖掘呢?
其实没有什么办法能够防止数据的过度挖掘。任何一个企业都需要挖掘到更多的内容。我们能做的,只是通过政府和行业的监管,使得但凡侵犯用户隐私,并且给用户造成恶意伤害的企业,受到很严重的惩罚。要求一个用户,用自己的方法去保护自己的隐私,是不现实也是不公平的。
您现在另一个身份是百分点科技的首席科学家,那能不能谈谈百分点网是怎样挖掘数据的呢?
百分点科技把用户在电子商务网站上的浏览、购买、收藏数据,以及在资讯网站上的浏览数据聚合在一起。分析用户自身的喜好,预测用户的意图,再利用这些喜好和意图,对用户进行更精准的资讯或者购物的推荐。
很多人现在听到数据挖掘就觉得很害怕,怕自己的隐私会泄露出去,那么有没有方法可以防止自己的个人数据被人挖掘呢?
就像我们没有办法利用自己的能力去鉴别假食品、假商品一样,我们不需要要求用户去保护自己的隐私。因为这种东西实际上是无能为力的。比如说你带着你的手机,我们通过传感器就能知道你在哪里。你没办法回避这个事实。所以,这就要回到刚才的那个回答,我们只能够通过去惩罚那些恶意使用个人隐私数据,谋取不正当利益的公司,来回避这个问题。
什么样的方式属于恶意使用个人隐私呢?能否举例说明?
销售一个人的手机号码、一个人的家庭地址,或者在网上通过一些不正当的公开数据使得一个人的隐私——比如你上了什么网站、买了什么东西、上了什么交友网站、看过什么图片等等,被其他人得知。这些都属于不正当的使用。
那么是否有一些切实可行的方法可以避免自己的隐私被恶意使用呢?
表面上用户在上网的时候不停地清除cookie,可以避免自己的隐私泄露,但实际上很多后台的软件还是可以获取你上网的记录。尤其是一些防病毒的软件,它本质上既可以在某种意义上保护你的隐私,也拿到你更全面的隐私数据。从技术层面上来讲,用户保护自己的隐私还是很困难的,并且用户体验很差——我们的注意力要从提高用户水平转移到严厉要求企业上面。
现在智能手机普及,很多人手机里有黑名单,可以把推销的短信、电话都加进去防止骚扰,这算不算是一种隐私保护呢?
如果你觉得一个电话是恶意的,那只能说明它的定位不太精准。我估计可能只是你(的电话)出现在某个名单中,而对方的客服挨个儿地打电话。但它的确会对你的生活产生一些干扰。我们现在没有什么办法可以完全防止这些干扰,虽然也可以通过很多手段去除掉一些垃圾短信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27