
如何有效应对大数据技术的伦理挑战
大数据技术是一把“双刃剑”,既可以为人类服务,也可能给人类带来麻烦。近来,频繁的网络公司泄露个人信息事件引起广泛关注,也使人们意识到,正确认识和有效应对大数据技术带来的隐私伦理问题至关重要。
关注“算法”背后的隐私伦理
大数据分析可以对人进行数据成像,在聚类、相关性分析以及数据整合的基础上刻画人的行为特征与倾向,在商业智能推荐、人的行为预测等方面具有广泛的应用前景。中国社会科学院哲学研究所研究员段伟文认为,从现象上看,它是一种非常有效的分析工具,但如果使用这些技术的人动机不纯,就有可能带来不良后果。从本质上讲,大数据带来的负面影响源于数据本身的特殊性,数据中隐含着人的各种信息,而这些信息很容易作为引导、说服与控制人类行为的工具。这一本质特征往往会诱使商家和滥用权力者干预人的自主权和侵犯人的隐私权。
“在大数据技术背景下讨论隐私伦理问题,人们主要关注的是信息隐私方面的伦理问题,最集中地体现在数据的开放共享与个人信息保护两者如何平衡的问题上。一般所说的大数据技术是一把‘双刃剑’,也主要是从这个意义上说的。”北京师范大学哲学学院教授田海平表示,数据的开放共享只是大数据技术得以实现的一个方面。除此之外,它还包括通过数字化技术获取和存储数据,通过大数据平台对海量数据进行深度挖掘、预测以及反馈等更为深度和实质性的数据占有与使用。目前,这种获取和使用数据的方式,可以通过深度机器学习做到完全智能化。就大数据的占有和使用方面而言,大数据技术加上机器学习,不仅在数据共享方面,而且在数据深度挖掘方面,把个人信息保护和数据权的确权问题都交给了“算法”,这是一个值得关注的、更为深层次的问题。
找寻技术和规范两方面原因
大数据技术的应用给人类带来一系列的隐私伦理问题和挑战,这其中既有大数据技术自身的原因,也有制度规范等的原因。
江西财经大学马克思主义学院教授黄欣荣表示,大数据技术在推动人类社会发展的同时,也带来了数据采集权、保存权、使用权、知情权、所有权、删除权、隐私权等伦理问题。产生这些问题的原因在于,大数据技术是一种全新的信息技术,大数据的隐私伦理问题是全新的问题。传统的法律法规、伦理道德难以约束相关机构采集、存储、传输和使用数据,并且新技术带来的新问题还没有完全暴露,新的法律法规难以同步发展。
段伟文认为,目前造成大数据隐私伦理问题的主要原因有:一是基于大数据分析的智能化商业推荐系统带来了全新的营销模式,其营销效率较传统的营销模式具有指数倍增效应,巨大利益诱惑面前,包含个人隐私及敏感信息的数据被单纯地视为牟利的工具和随意转卖的商品,个人的数据保护往往被商家忽视,甚至被商家运用算法加以算计,使人的隐私权受到侵犯;二是合理可行的个人数据授权和保护机制尚未建立,很多数据在用于某一分析之后被用于其他不明领域;三是分散的数据被整合之后,也可能通过数据分析洞察出一些不一定准确但会对主体造成负面影响的特征,进而诱使对这些特征进行不良使用。
加强数据立法 坚守伦理底线
对于如何让大数据技术更好地为人类服务,黄欣荣认为,需要强化隐私观念,加强数据立法,坚守伦理底线。
田海平认为,尊重个人隐私权是一个毋庸置疑的底线伦理原则。只有我们的法律体系和道德体系在规范合理性的构建方面坚守这条底线,大数据技术的应用才能够真正做到趋利避害。“数据共享”与“隐私保护”构成了大数据时代无法割舍的两面性,它实际上凸显了将“数据共享的伦理”与“隐私保护的伦理”,既以一种价值方式又以一种技术方式在大数据时代同时实现的任务。
段伟文表示,首先,要进一步凸显主体数据权利保护意识,联系大数据技术发展中的各种伦理冲突,解剖典型案例,进而从理论上廓清符合大数据时代特征的新型数据权利、隐私权以及被遗忘权的基本概念以及实践范例。其次,建立起包括商家、政府法律部门、普通用户等相关利益群体的对话机制,制定在具体的、数据驱动的社会经济乃至治理活动中的数据保护规范与实现机制。最后,做好与危害数据权利、恶意侵犯个人隐私权行为长期斗争的准备,探寻从法律和伦理层面根治此类问题的有效策略,并使之作为治理法规积淀下来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10