京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何有效应对大数据技术的伦理挑战
大数据技术是一把“双刃剑”,既可以为人类服务,也可能给人类带来麻烦。近来,频繁的网络公司泄露个人信息事件引起广泛关注,也使人们意识到,正确认识和有效应对大数据技术带来的隐私伦理问题至关重要。
关注“算法”背后的隐私伦理
大数据分析可以对人进行数据成像,在聚类、相关性分析以及数据整合的基础上刻画人的行为特征与倾向,在商业智能推荐、人的行为预测等方面具有广泛的应用前景。中国社会科学院哲学研究所研究员段伟文认为,从现象上看,它是一种非常有效的分析工具,但如果使用这些技术的人动机不纯,就有可能带来不良后果。从本质上讲,大数据带来的负面影响源于数据本身的特殊性,数据中隐含着人的各种信息,而这些信息很容易作为引导、说服与控制人类行为的工具。这一本质特征往往会诱使商家和滥用权力者干预人的自主权和侵犯人的隐私权。
“在大数据技术背景下讨论隐私伦理问题,人们主要关注的是信息隐私方面的伦理问题,最集中地体现在数据的开放共享与个人信息保护两者如何平衡的问题上。一般所说的大数据技术是一把‘双刃剑’,也主要是从这个意义上说的。”北京师范大学哲学学院教授田海平表示,数据的开放共享只是大数据技术得以实现的一个方面。除此之外,它还包括通过数字化技术获取和存储数据,通过大数据平台对海量数据进行深度挖掘、预测以及反馈等更为深度和实质性的数据占有与使用。目前,这种获取和使用数据的方式,可以通过深度机器学习做到完全智能化。就大数据的占有和使用方面而言,大数据技术加上机器学习,不仅在数据共享方面,而且在数据深度挖掘方面,把个人信息保护和数据权的确权问题都交给了“算法”,这是一个值得关注的、更为深层次的问题。
找寻技术和规范两方面原因
大数据技术的应用给人类带来一系列的隐私伦理问题和挑战,这其中既有大数据技术自身的原因,也有制度规范等的原因。
江西财经大学马克思主义学院教授黄欣荣表示,大数据技术在推动人类社会发展的同时,也带来了数据采集权、保存权、使用权、知情权、所有权、删除权、隐私权等伦理问题。产生这些问题的原因在于,大数据技术是一种全新的信息技术,大数据的隐私伦理问题是全新的问题。传统的法律法规、伦理道德难以约束相关机构采集、存储、传输和使用数据,并且新技术带来的新问题还没有完全暴露,新的法律法规难以同步发展。
段伟文认为,目前造成大数据隐私伦理问题的主要原因有:一是基于大数据分析的智能化商业推荐系统带来了全新的营销模式,其营销效率较传统的营销模式具有指数倍增效应,巨大利益诱惑面前,包含个人隐私及敏感信息的数据被单纯地视为牟利的工具和随意转卖的商品,个人的数据保护往往被商家忽视,甚至被商家运用算法加以算计,使人的隐私权受到侵犯;二是合理可行的个人数据授权和保护机制尚未建立,很多数据在用于某一分析之后被用于其他不明领域;三是分散的数据被整合之后,也可能通过数据分析洞察出一些不一定准确但会对主体造成负面影响的特征,进而诱使对这些特征进行不良使用。
加强数据立法 坚守伦理底线
对于如何让大数据技术更好地为人类服务,黄欣荣认为,需要强化隐私观念,加强数据立法,坚守伦理底线。
田海平认为,尊重个人隐私权是一个毋庸置疑的底线伦理原则。只有我们的法律体系和道德体系在规范合理性的构建方面坚守这条底线,大数据技术的应用才能够真正做到趋利避害。“数据共享”与“隐私保护”构成了大数据时代无法割舍的两面性,它实际上凸显了将“数据共享的伦理”与“隐私保护的伦理”,既以一种价值方式又以一种技术方式在大数据时代同时实现的任务。
段伟文表示,首先,要进一步凸显主体数据权利保护意识,联系大数据技术发展中的各种伦理冲突,解剖典型案例,进而从理论上廓清符合大数据时代特征的新型数据权利、隐私权以及被遗忘权的基本概念以及实践范例。其次,建立起包括商家、政府法律部门、普通用户等相关利益群体的对话机制,制定在具体的、数据驱动的社会经济乃至治理活动中的数据保护规范与实现机制。最后,做好与危害数据权利、恶意侵犯个人隐私权行为长期斗争的准备,探寻从法律和伦理层面根治此类问题的有效策略,并使之作为治理法规积淀下来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27