京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Python求解最大公约数的实现方法
这篇文章主要介绍了使用Python求解最大公约数的实现方法,包括用Python表示欧几里得算法和Stein算法的求解原理.
1. 欧几里德算法
欧几里德算法又称辗转相除法, 用于计算两个整数a, b的最大公约数。其计算原理依赖于下面的定理:
定理: gcd(a, b) = gcd(b, a mod b)
证明:
a可以表示成a = kb + r, 则r = a mod b
假设d是a, b的一个公约数, 则有 d|a, d|b, 而r = a - kb, 因此d|r。
因此,d是(b, a mod b)的公约数。
加上d是(b,a mod b)的公约数,则d|b, d|r, 但是a = kb + r,因此d也是(a, b)的公约数。
因此,(a, b) 和(a, a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德的Python语言描述为:
2. Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,无论是理论,还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在很大的素数时才会显现出来。
考虑现在的硬件平台,一般整数最多也就是64位,
对于这样的整数,计算两个数值就的模很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
Stein算法由J.Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。
为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。
gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。
Stein算法的python实现如下:
def gcd_Stein(a, b):
if a < b:
a, b = b, a
if (0 == b):
return a
if a % 2 == 0 and b % 2 == 0:
return 2 * gcd_Stein(a/2, b/2)
if a % 2 == 0:
return gcd_Stein(a / 2, b)
if b % 2 == 0:
return gcd_Stein(a, b / 2)
return gcd_Stein((a + b) / 2, (a - b) / 2)
3. 一般求解实现
核心代码很简单:
def gcd(a, b):
if b == 0:return a
return gcd(b, a % b)
附上一个用Python实现求最大公约数同时判断是否是素数的一般方法:
程序如下:
#!/usr/bin/env python
def showMaxFactor(num):
count = num / 2
while count > 1:
if num % count == 0:
print 'largest factor of %d is %d' % (num, count)
break #break跳出时会跳出下面的else语句
count -= 1
else:
print num, "is prime"
for eachNum in range(10,21):
showMaxFactor(eachNum)
输出如下:
largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime
largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9
19 is prime
largest factor of 20 is 10
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05