
浅谈Python的Django框架中的缓存控制
关于缓存剩下的问题是数据的隐私性以及在级联缓存中数据应该在何处储存的问题。通常用户将会面对两种缓存: 他或她自己的浏览器缓存(私有缓存)以及他或她的提供者缓存(公共缓存)。 公共缓存由多个用户使用,而受其他某人的控制。 这就产生了你不想遇到的敏感数据的问题,比如说你的银行账号被存储在公众缓存中。 因此,Web 应用程序需要以某种方式告诉缓存那些数据是私有的,哪些是公共的。
解决方案是标示出某个页面缓存应当是私有的。 要在 Django 中完成此项工作,可使用 cache_control 视图修饰器: 例如:
from django.views.decorators.cache import cache_control
@cache_control(private=True)
def my_view(request):
# ...
该修饰器负责在后台发送相应的 HTTP 头部。
还有一些其他方法可以控制缓存参数。 例如, HTTP 允许应用程序执行如下操作:
定义页面可以被缓存的最大时间。
指定某个缓存是否总是检查较新版本,仅当无更新时才传递所缓存内容。 (一些缓存即便在服务器页面发生变化的情况下仍然会传送所缓存的内容,只因为缓存拷贝没有过期。)
在 Django 中,可使用 cache_control 视图修饰器指定这些缓存参数。 在本例中, cache_control 告诉缓存对每次访问都重新验证缓存并在最长 3600 秒内保存所缓存版本:
from django.views.decorators.cache import cache_control
@cache_control(must_revalidate=True, max_age=3600)
def my_view(request):
# ...
在 cache_control() 中,任何合法的Cache-Control HTTP 指令都是有效的。下面是完整列表:
public=True
private=True
no_cache=True
no_transform=True
must_revalidate=True
proxy_revalidate=True
max_age=num_seconds
s_maxage=num_seconds
缓存中间件已经使用 CACHE_MIDDLEWARE_SETTINGS 设置设定了缓存头部 max-age 。 如果你在cache_control修饰器中使用了自定义的max_age,该修饰器将会取得优先权,该头部的值将被正确地被合并。
如果你想用头部完全禁掉缓存,django.views.decorators.cache.never_cache装饰器可以添加确保响应不被缓存的头部信息。 例如:
from django.views.decorators.cache import never_cache
@never_cache
def myview(request):
# ...
其他优化
Django 带有一些其它中间件可帮助您优化应用程序的性能:
django.middleware.http.ConditionalGetMiddleware 为现代浏览器增加了有条件的,基于 ETag 和 Last-Modified 头标的GET响应的相关支持。
django.middleware.gzip.GZipMiddleware 为所有现代浏览器压缩响应内容,以节省带宽和传送时间。
MIDDLEWARE_CLASSES 的顺序
如果使用缓存中间件,注意在MIDDLEWARE_CLASSES设置中正确配置。 因为缓存中间件需要知道哪些头部信息由哪些缓存区来区分。 中间件总是尽可能得想Vary响应头中添加信息。
UpdateCacheMiddleware在相应阶段运行。因为中间件是以相反顺序运行的,所有列表顶部的中间件反而last在相应阶段的最后运行。 所有,你需要确保UpdateCacheMiddleware排在任何可能往Vary头部添加信息的中间件之前。 下面的中间件模块就是这样的:
添加 Cookie 的 SessionMiddleware
添加 Accept-Encoding 的 GZipMiddleware
添加Accept-Language的LocaleMiddleware
另一方面,FetchFromCacheMiddleware在请求阶段运行,这时中间件循序执行,所以列表顶端的项目会首先执行。 FetchFromCacheMiddleware也需要在会修改Vary头部的中间件之后运行,所以FetchFromCacheMiddleware必须放在它们后面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10