
数据分析技术给商业模式带来颠覆的五种方式
近年来,越来越多大型企业开始投资数据分析技术,希望借此证明“我可以做得更好”。而云计算的兴起,也使得规模有限的初创企业也可拥有将大数据技术与高级数据分析加以结合的能力。在今天的文章中,我们将共同探讨数据分析技术给商业模式带来颠覆的五种方式。
2017年10月10日,腾讯宣布斥资11亿美元投资奥莱,这是匹马市场的头号玩家。但奥拉并不孤单挑战既定的商业模式。
看看优步,亚马逊,Airbnb,edX,Netflix,Society One和TripAdvisor的兴起。他们都看着自己的行业中的一个坚定的人,并说:“我可以做得更好。”
80%的公司预测他们的行业在未来三年将受到新技术的影响。
借助云计算,即使是最小的启动,也可以将大数据技术与高级数据分析结合在一起。每天,发现新的运营和市场见解以及未开发的客户群的能力都在增长。
超过90%的公司认为大数据和分析是战略重点,但贝恩说,只有19%的公司持续采集高质量数据!
大多数竞争对手可能没有利用数据技术,但是你呢?如果你懒惰,你可以保证有一个开始或创新的竞争对手把你的目光投向了你。
数据的力量
大数据已经成为一种强大的资源。如果盲目瞄准潜在客户,公司就无法取得成功。为了蓬勃发展,你需要确切地知道你要去哪里,为什么要去那里,以及你愿意投入到旅程中的努力。
大数据是你的指南。
但是,您需要有清晰的愿景,战略方法和用例来推进您的大数据发现。您需要参与使用分析,以便您拥有整体视图或业务。
要做到这一点,请重新定义如何处理数据并为数据的使用设置基准。
5种方法来挖掘变革性数据
1.战略分析
战略分析是详细的,数据驱动的整个系统分析,以帮助您确定推动客户和市场行为的因素。
战略分析的关键是按照正确的顺序进行:
第1步 - 竞争优势分析以确定您的能力,优势和劣势。
第2步 - 企业分析可在企业,业务单位和业务流程级别获取诊断信息。
第3步 - 人力资本分析在个人层面进行诊断,以获得可操作的见解。
数据应该回答如下关键问题:
什么是为我们带来最大价值的关键决策?
尚未开采的新数据有哪些?
尚未完全探索哪些新的分析技术?
2.平台分析
这有助于您将分析融入您的决策过程中,从而改进核心业务。它可以帮助您的公司利用数据的力量来发现新的机会。
要问的重要问题包括:
我们如何将分析整合到日常流程中?
哪些流程将受益于自动,可重复的实时分析?
我们的后端系统能否受益于大数据分析?
平台分析必须包含多种技术。由于它可以通过多种格式和渠道获得,因此可用于检查组织的脉搏。
它将帮助您将数据分析整合到所有部门的关键决策中,包括销售,市场营销,供应链,客户服务,客户体验和其他核心业务功能。
3.企业信息管理(EIM)
将近80%的重要商业信息存储在非托管存储库中。通过战略和平台分析,EIM可帮助您利用社交,移动,分析和云技术(SMAC)改进数据在公司内的管理和使用方式。
通过使用信息创建,捕获,分发和消费工具构建敏捷数据管理操作,EIM将帮助您:
简化您的业务实践。
加强协作努力。
提高员工在办公室内外的工作效率。
在定义您的EIM战略时,确定业务需求,关键问题以及启动EIM的机会。此外,确定潜在的项目和项目,其成功率将受益于EIM。
4.商业模式转型
采用大数据分析和并行转换业务模式的公司将为收入来源,客户,产品和服务创造新的机遇。
从预测需求和采购材料到会计,以及员工的招聘和培训,您的业务的每个方面都可以重新设计。
所需的更改包括:
拥有大数据战略和愿景,能够识别并利用新机会。
培养创新和实验数据的文化。
了解如何利用新技能和新技术,并管理他们对如何访问和维护信息的影响。
与持有重要数据的消费者建立信任关系。
在核心行业内外创建合作伙伴关系。
找到快速洞察和实施结果的方法。
5.建立以数据为中心的业务
您是否生成大量数据?这些数据是否会使您行业内外的其他组织受益?
以数据为中心的业务不仅仅是一种资产,而是货币。这是您核心竞争力的源泉,它的价值体现在黄金上。
主要有三类数据分析:
透视:包括挖掘,清理,群集和细分数据,以了解客户及其网络,影响力和产品洞察力
优化:分析业务功能,流程和模型。
创新:探索新的颠覆性商业模式,以促进客户群的发展和成长。
已建立的商业模式受到攻击
数据分析正在迅速推翻我们开展业务的方式。这五种数据分析的变革性应用将帮助您成为具有前瞻性思维的公司,并在市场中获得竞争优势。
没有哪个行业的数据分析不能从中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11