京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据发展已具规模 下一步跨领域生态发展或是关键
随着移动互联网、智能终端和数据传感器的出现,数据正以超出想象的速度快速增长。据相关数据报告显示,2014年全球数据总量为6.2ZB(万亿GB),2015年全球数据总量达8.6ZB。目前全球数据的增长速度在每年40%左右,预计到2020年全球的数据总量将达到40ZB。
整体来看,中国的大数据产业初具规模,整个市场保持高速增长的态势。作为标志性的大数据元年,2015年中国大数据市场规模达到115.9亿元,2016年达到168亿元,预计到2021年中国大数据市场规模将达到898亿元。
技术创新迭代有序
现阶段,一大批大数据相关的企业在Hadoop&Spark大数据技术开发、数据挖掘主要算法、大并发数据物理存储与处理技术,自主分析技术,智能平台服务,特定领域研发数据分析工具,语音识别、图像理解、文本挖掘等机器深度学习方法方面,取得较大成果。在平台建设方面,阿里、腾讯等企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。
大数据技术前景刺激人才建设。此前包括北京大学、人民大学等35所国内高等学府申报大数据专业。于此同时高校联合企业的产学研合作项目发展如火如荼。以深圳大学计算机软件学院为例,与中琛源科技等企业展开包括技术人员培训、科研成果落地试验、大数据平台技术研发等多项合作,促进技术交流,不断创新出新技术、新产品、新业态和新模式。
“大数据+”纵深发展成重点
在国家“十三五”战略规划、“互联网+”和“中国制造2025”等重大国家战略中,明确为大数据应用,大数据产业发展指明了方向。
现阶段,“大数据+”产业发展呈现两方面的深度应用。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门。2017年,大数据服务商中琛源发布“立咕应用”智能应用服务平台。中琛源市场总监谢梓桢告诉记者,通过采集-分析-营销应用,平台为每位消费者会员建立大数据画像和标签。企业能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户,“支撑企业快速对接并开展品牌营销策划,实现智能化的业务应用”。
除消费产业大数据之外,现阶段,大数据应用还在向产业互联网方向延伸。大数据应用技术不断开发、完善,越来越多的“数据信息孤岛”被打破,呈现跨行业、跨领域的数据交流与融合。如智慧城市、智能医疗、智慧农业、大数据金融、教育等。
比较典型的是金融和汽车领域。随着大数据与金融保险行业的融合,将衍生出差异分级式的保险定价模式。随着车联网的加速发展,汽车后市场将迎来变革。整车制造商和互联网厂商将基于用户数据和车辆行驶数据实现跨界竞争等。
数字产业生态发展或是未来关键
据国际市场调研机构IDC指出,当前依托移动互联网、云、大数据为核心的数字化转型已然成为所有企业应对挑战的主要战略。预计到2018年,全球1000强企业的67%,中国1000强企业中的50%都将把数字化转型作为企业的战略核心。然而,企业依托大数据创新转型过程中,也面临技术储备不足、人才匮乏、数字战略模糊及战术欠缺等制约,企业发展大数据成本过高,数字化转型风险颇高。
对于企业而言,数据不是关键,以数据应用为核心,提供集数据分析及决策于一体的数字化生态模型才最重要。比如,建立一套统一的数据标准,将企业多维度、多场景的数据放在同一个数据综合平台整理、分析、共享,这样企业就可以通过平台上的大数据,直观清晰地了解企业自身涉及到日常管理、员工考勤、销售业绩、营销推广、客户服务等情况,并能提前预测,指导中小企业及时、精准制定策略。从而降低企业大数据成本、人力成本、决策成本等。
未来,大数据产业更加开放,并向生态化发展,以满足各行业的特性去求和不同用户的个性化需求。“数字生态并不局限于服务特定的行业或领域,而是帮助各行各业的企业用户,提供综合的数据云服务,包括移动办公,数字营销,精准客户服务等,帮助企业用户实现自身能力和产业的升级。”对此,中琛源大数据综合服务平台研发总监程贺雷这样描述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05