
python标准日志模块logging的使用方法
最近写一个爬虫系统,需要用到python的日志记录模块,于是便学习了一下。
python的标准库里的日志系统从Python2.3开始支持。只要import logging这个模块即可使用。如果你想开发一个日志系统, 既要把日志输出到控制台, 还要写入日志文件,只要这样使用:
结合上面的例子,我们说下几个最常使用的API:
logging.getLogger([name])
返回一个logger实例,如果没有指定name,返回root
logger。只要name相同,返回的logger实例都是同一个而且只有一个,即name和logger实例是一一对应的。这意味着,无需把logger实例在各个模块中传递。只要知道name,就能得到同一个logger实例。
Logger.setLevel(lvl)
设置logger的level, level有以下几个级别:
级别高低顺序:NOTSET < DEBUG < INFO < WARNING < ERROR < CRITICAL
如果把looger的级别设置为INFO, 那么小于INFO级别的日志都不输出, 大于等于INFO级别的日志都输出
Logger.addHandler(hdlr)
通过handler对象可以把日志内容写到不同的地方。比如简单的StreamHandler就是把日志写到类似文件的地方。python提供了十几种实用handler,比较常用有:
logging.basicConfig([**kwargs])*
这个函数用来配置root logger, 为root logger创建一个StreamHandler,设置默认的格式。* 这些函数:
logging.debug()、logging.info()、logging.warning()、logging.error()、logging.critical()
如果调用的时候发现root logger没有任何handler,会自动调用basicConfig添加一个handler* 如果root
logger已有handler,这个函数不做任何事情使用basicConfig来配置root logger的输出格式和level:
ogger对象直接提供日志接口。formatter描述日志的格式。handler把日志写到不同的地方,你可以把日志保存成本地文件,也可以每个小时写一个日志文件,还可以把日志通过socket传到别的机器上。
从最简单的formatter对象来看。formatter指定的是每一条日志记录的抬头信息,也就是你可以指定日志记录的时间格式、进程号、文件名、函数名等信息。可以用这个方法来创建一个formatter对象:
fmt参数指定进程号、文件名、函数名等信息是否出现以及格式, datefmt为日期时间格式,默认的日期格式精确到微秒,例如‘2003-07-08 16:49:45,896'。fmt中可以指定多个字段,每个字段的格式为“%(<dictionary key>)s”, 例如你想打印时间、日志级别、日志信息可以用下面的format:
在记录爬虫系统日志的时候需要定义记录日志的级别,级别越高表示打出来的日志越详细。我们可以用一个字典来设置不同级别对应的不同日志信息:
将本文开始的代码封装在一个类中
再通过以下方式调用,便是一个简单的日志系统了
logger = Logger(logname='log.txt', loglevel=1, logger="fox").getlog()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14