
大数据的存储和搜索面临很大挑战
大数据并非是一个全新的概念,早在1980年,阿尔文托夫勒就在《第三次浪潮》一书中预言了由数据构成的“碎片化未来”,并将海量数据赞颂为“第三次浪潮的华彩乐章”。然而,大数据真正流行起来是在2011年之后,数据量呈几何指数上升,物联网、云计算等技术的日渐成熟使得数据的获取、存储和处理的成本急剧下降,促使大数据一时间成为了各方视线的焦点。
首先,伴随着移动终端、传感器的迅速普及以及社会化媒体等互联网应用的日益多样化,数据量呈现出爆发式的增长,数据集的规模已经达到了TB甚至是PB的级别。这些海量的、碎片化的数据不仅能够较为完整地刻画出人们在线行为,还可以通过各类传感设备的数据来记录实体经济的运行状况。
其次,数据的种类也愈发丰富,不仅包含文本内容,还包括图片、音频、视频等非结构化数据,为数据的存储和搜索带来了很大挑战,这意味着传统意义上适用于文本内容存储和分析的数据库关联算法、语义分析等手段已经渐渐失效。
第三,大数据蕴含着巨大的价值,但相比于庞大的数据规模,其价值密度却是非常稀疏的,可谓是“浪里淘沙、弥足珍贵”。例如,公安视频监控系统需要7×24小时的记录,但用于犯罪证据获取的也许只是短短数秒;对于零售产业的推荐系统,也只有通过海量数据的分析,才能进行较为精准的预测。
第四,大数据需要实时的记录与响应,如动态的股价、路况信息以及电子商务的交易数据等,都需要实时的调用和处理,才能够充分体现出数据的价值所在。此外,社会化媒体、社交网站中的关系数据成为了大数据的价值倍增器,这是因为人们已经不可避免地镶嵌于人际关系网络中,个体的影响力会经由社交网络快速蔓延。
不久前,作为全球最大零售商的沃尔玛也充分意识到了关系数据的重要性,在其社交基因组(Social Genome)计划中整合了用户在Facebook、Twitter中的关系数据,用以更精准地推测消费者的偏好。 综上所述,大数据的基本特征可以概括为规模化(Volume)、多样性(Variety)、高价值(Value)、速度快(Velocity)以及社会化(Social)等五个特点,即“4V 1S”的特点。这样的大数据浪潮,也深刻的影响了各个传统行业的发展轨迹,变革一触即发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10