
机器学习中的非均衡分类问题
非均衡分类问题是指在分类器训练时,正例数目和反例数目不相等(相差很大),或者错分正反例导致的代价不同(可从代价矩阵观测)时存在的问题。
而大多数情况下,不同类别的分类代价并不相等,而诸如信用卡欺诈等场景中,正反例的样本数目相差巨大,这就需要一些新的分类器性能度量方法和技术,来处理上述非均衡问题。
1、分类器性能度量指标
分类器学习常用的错误率指标会掩盖样例如何被错分的细节,可以采用更好的性能度量指标1 ——正确率TP/(TP+FP)和召回率TP/(TP+FN)。
实际上,单独满足其中一个指标高性能较容易,但构造一个同时高正确率有高召回率的分类器很难。至于具体选择正确率还是召回率,关键在于场景或者说研究问题,例如在购物刷单问题中,正确率远比召回率更重要。
此外可以采用性能度量指标2 ——ROC曲线,即接收者操作特征曲线。
ROC曲线给出的是当阈值变化时,假阳率和真阳率之间的变化情况。因此,我们可以通过观察ROC曲线来调节分类器的阈值,使得分类器的性能最好处于ROC曲线的左上角。由ROC曲线衍生的AUC(曲线下的面积)指标给出了分类器的平均性能值。
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) # current plot node
ySum = 0.0 # for AUC
numPosClas = sum(numpy.array(classLabels)==1.0)
numNegClas = len(classLabels) - numPosClas
yStep = 1/float(numPosClas)
xStep = 1/float(numNegClas)
sortedIndicies = predStrengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep
2、基于代价敏感的学习方法
一方面,重构训练数据集。即不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。
另一方面,引入代价敏感因子,设计出代价敏感的分类算法。通常可以将各分类器学习时的目标函数改造成最小化代价函数,即对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。
3、改造分类器的训练数据 —— 过抽样或者欠抽样
过抽样,即保留样本数目小的类别的所有样本同时,再进行复制或者进行插值,扩大规模。注意对小样本数目的类别的样本们进行插值有可能造成过拟合。
欠抽样,即欠抽样或者剔除样本数目大的类别中的部分样本,缩小规模。进行剔除时,尽量选择那些离决策边界较远的样例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11