京公网安备 11010802034615号
经营许可证编号:京B2-20210330
单向链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
表元素域elem用来存放具体的数据。
链接域next用来存放下一个节点的位置(python中的标识)
变量p指向链表的头节点(首节点)的位置,从p出发能找到表中的任意节点。
节点实现
class Node(object):
"""单链表的结点"""
def __init__(self,item):
# item存放数据元素
self.item = item
# next是下一个节点的标识
self.next = None
单链表的操作
is_empty() 链表是否为空
length() 链表长度
travel() 遍历整个链表
add(item) 链表头部添加元素
append(item) 链表尾部添加元素
insert(pos, item) 指定位置添加元素
remove(item) 删除节点
search(item) 查找节点是否存在
单链表的实现
class Singlepnkpst(object):
"""单链表"""
def __init__(self):
self.__head = None
def is_empty(self):
"""判断链表是否为空"""
return self.__head == None
def length(self):
"""链表长度"""
# cur初始时指向头节点
cur = self.__head
count = 0
# 尾节点指向None,当未到达尾部时
while cur != None:
count += 1
# 将cur后移一个节点
cur = cur.next
return count
def travel(self):
"""遍历链表"""
cur = self.__head
while cur != None:
print(cur.item,end = ' ')
cur = cur.next
print("")
头部添加元素
def add(self, item):
"""头部添加元素"""
# 先创建一个保存item值的节点
node = Node(item)
# 将新节点的链接域next指向头节点,即_head指向的位置
node.next = self.__head
# 将链表的头_head指向新节点
self.__head = nod
尾部添加元素
def append(self, item):
"""尾部添加元素"""
node = Node(item)
# 先判断链表是否为空,若是空链表,则将_head指向新节点
if self.is_empty():
self.__head = node
# 若不为空,则找到尾部,将尾节点的next指向新节点
else:
cur = self.__head
while cur.next != None:
cur = cur.next
cur.next = node
指定位置添加元素
def insert(self, pos, item):
"""指定位置添加元素"""
# 若指定位置pos为第一个元素之前,则执行头部插入
if pos <= 0:
self.add(item)
# 若指定位置超过链表尾部,则执行尾部插入
epf pos > (self.length()-1):
self.append(item)
# 找到指定位置
else:
node = Node(item)
count = 0
# pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置
pre = self.__head
while count < (pos-1):
count += 1
pre = pre.next
# 先将新节点node的next指向插入位置的节点
node.next = pre.next
# 将插入位置的前一个节点的next指向新节点
pre.next = node
删除节点
def remove(self,item):
"""删除节点"""
cur = self.__head
pre = None
while cur != None:
# 找到了指定元素
if cur.item == item:
# 如果第一个就是删除的节点
if not pre:
# 将头指针指向头节点的后一个节点
self.__head = cur.next
else:
# 将删除位置前一个节点的next指向删除位置的后一个节点
pre.next = cur.next
break
else:
# 继续按链表后移节点
pre = cur
cur = cur.next
查找节点是否存在
def search(self,item):
"""链表查找节点是否存在,并返回True或者False"""
cur = self.__head
while cur != None:
if cur.item == item:
return True
cur = cur.next
return False
以上这篇python数据结构链表之单向链表(实例讲解)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05