
Python实现加载及解析properties配置文件的方法
本文实例讲述了Python实现加载及解析properties配置文件的方法。分享给大家供大家参考,具体如下:
我们都是在java里面遇到要解析properties文件,在python中基本没有遇到这中情况,今天用python跑深度学习的时候,发现有些参数可以放在一个global.properties全局文件中,这样使用的时候更加方便。原理都是加载文件,然后用line方法进行解析判断”=”,自己从网上找到一个工具类,记录一下。
工具类 PropertiesUtiil.py
# -*- coding:utf-8 -*-
class Properties(object):
def __init__(self, fileName):
self.fileName = fileName
self.properties = {}
def __getDict(self,strName,dictName,value):
if(strName.find('.')>0):
k = strName.split('.')[0]
dictName.setdefault(k,{})
return self.__getDict(strName[len(k)+1:],dictName[k],value)
else:
dictName[strName] = value
return
def getProperties(self):
try:
pro_file = open(self.fileName, 'Ur')
for line in pro_file.readlines():
line = line.strip().replace('\n', '')
if line.find("#")!=-1:
line=line[0:line.find('#')]
if line.find('=') > 0:
strs = line.split('=')
strs[1]= line[len(strs[0])+1:]
self.__getDict(strs[0].strip(),self.properties,strs[1].strip())
except Exception, e:
raise e
else:
pro_file.close()
return self.properties
通过上面的代码就可以解析了properties文件了。新建一个文件
global.properties 文件
a.name.last=jie
b.name.first=shi
#b.name=shijie
测试 test.py
from PropertiesUtil import Properties
dictProperties=Properties("global.properties").getProperties()
print dictProperties
控制台打印:
/usr/bin/python2.7 /home/tengxing/rude-carnie/test.py
{'a': {'name': {'last': 'jie'}}, 'b': {'name': {'first': 'shi'}}}
Process finished with exit code 0
我感觉还是挺方便的,就对做深度学习来说吧,把模型的的位置,训练数据放在一个global.properties文件中,方便管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02