
拥抱大数据需要大智慧
近年来,有关大数据的热点话题一浪高过一浪,关注大数据应用的人也越来越多。总体来说,人们对大数据的前景持乐观态度,比如谈到大数据的技术特征,人们最容易想起的就是4个“v”:vast(数量庞大)、variety(种类繁多)、velocity(增长迅速)和value(总价值高)。这些都没错,但仔细一想,它们都是偏重说明大数据的正面优势的。但其实,大也有大的难处,大数据也不可避免地存在着一些负面劣势。结合笔者的从业经验,大数据的负面劣势可以概括为4个“n”,下面逐一说明每个n的含义。
inflated大数据是肥胖的。大数据的大不仅仅体现在数据记录的行数多,更体现在字段变量的列数多,这就为分析多因素之间的关联性带来了难度。哪怕是最简单的方差分析,计算一两个还行,计算一两百个就让人望而生畏了。
unstructured大数据是非结构化的。大数据的结构也是非常复杂的,既包括像交易额、时间等连续型变量,像性别、工作类型等离散型变量这样传统的结构化数据,更增添了如文本、社会关系网络,乃至语音、图像等大量新兴的非结构化数据,而这些非结构化数据蕴含的信息量往往更加巨大,但分析手段却略显单薄。
incomplete大数据是残缺的。在现实的世界里,由于用户登记的信息不全、计算机数据存储的错误等种种原因,数据缺失是常见的现象。在大数据的场景下,数据缺失更是家常便饭,这就为后期的分析与建模质量增加了不确定的风险。
abnormal大数据是异常的。同样,在现实的世界里,大数据里还有不少异常值(outlier)。比如某些连续型变量(如一个短期时间内的交易金额)的取之太大,某些离散型变量(如某个被选购的产品名称)里的某个水平值出现的次数太少,等等。如果不删除,很可能干扰模型系数的计算和评估;如果直接删除,又觉得缺乏说服力,容易引起他人的质疑。这使得分析人员落到了一个进退两难的境地。
如果不能处理好这些不利因素,大数据应用的优势很难发挥出来。想要拥抱大数据,并不是一项在常规条件下数据分析的简单升级,而是一项需要大智慧的综合工作。STIR(唤醒)策略是笔者在实践工作中提炼出来的、能够在实际工作中有效克服大数据负面劣势的应对方法。具体来说,STIR策略包含了四种技术手段,目前都已经有机地整合在统计分析与数据挖掘专业软件JMP中了,它可以用来解决上文提出的四个问题,下面将分别说明。
Switching Variables切换变量
它是用来解决大数据“残缺”问题的。通过“列转换器”、“动画播放”等工具,海量因素之间的关联性分析变得十分简单、快捷,还可以根据需要对关联性的重要程度进行排序,大数据分析的效率由此得到大幅提升。
基于JMP软件的关联性分析筛选的界面
Text Mining文本挖掘
它是用来解决大数据“非结构化”问题的。通过先对文字、图像等新媒体信息源进行降维、去噪、转换等处理,产生结构化数据,再用成熟的统计分析和数据挖掘方法进行评价和解释。这样一来,大数据的应用范围得到了极大的拓展。
基于JMP软件的文本分析结果的最终展现界面
Imputation缺失数赋值
它是用来解决大数据“残缺”问题的。在有missing data的时候,我们并不完全排斥直接删除的方法,但更多的时候,我们会在条件允许的情况下,用赋值的方法去替代原先的缺失值。具体的技术很多,简单的如计算平均值、中位数、众数之类的统计量,复杂的如用回归、决策树、贝叶斯定理去预测缺失数的近似值等。这样一来,大数据的质量大为改观,为后期的分析与建模奠定了扎实的基础。
Robust Modeling稳健建模
它是用来解决大数据“异常”问题的。在融入了自动识别、重要性加权等处理手段后,分析人员既直接消除了个别强影响点的敏感程度,又综合考虑了所有数据的影响,增强了模型的抗干扰能力,使得模型体现出良好的预测特性,由此做出的业务决策自然变得更加科学、精准。
总之,我们必须要对大数据有一个全面、客观的认识。只有在不同的业务和数据背景下采用不同的战略战术,才能在大数据时代,真正发挥大数据的杠杆作用,有效提高企业的运营效率和市场竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10