京公网安备 11010802034615号
经营许可证编号:京B2-20210330
栈和队列数据结构的基本概念及其相关的Python实现
先来回顾一下栈和队列的基本概念:
相同点:从"数据结构"的角度看,它们都是线性结构,即数据元素之间的关系相同。
不同点:栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表。 队列(Queue)是限定只能在表的一端进行插入和在另一端进行删除操作的线性表。它们是完全不同的数据类型。除了它们各自的基本操作集不同外,主要区别是对插入和删除操作的"限定"。
栈必须按"后进先出"的规则进行操作:比如说,小学老师批改学生的作业,如果不打乱作业本的顺序的话,那么老师批改的第一份作业一定是最后那名同学交的那份作业,如果把所有作业本看作是一个栈中的元素,那么最后一个同学交的作业本就是栈顶元素,而第一个同学交的,也就是最低端的作业本,就是栈底元素,这就是对栈的读取规则。
而队列必须按"先进先出"的规则进行操作:打个比方,一些人去银行办理业务,一定是先去排队的最先得到服务,当然他也是第一个走出银行的(假设这些人都在一个窗口排队)。如果把所有这些等候服务的人看作是队的元素,第一个人就是对头元素,相应的,最后一个人就是队尾元素。这是队的读取规则。
用Python实现栈,这是Python核心编程里的一个例子:
'#!/usr/bin/env python
#定义一个列表来模拟栈
stack = []
#进栈,调用列表的append()函数加到列表的末尾,strip()没有参数是去掉首尾的空格
def pushit():
stack.append(raw_input('Enter new string: ').strip())
#出栈,用到了pop()函数
def popit():
if len(stack) == 0:
print 'Cannot pop from an empty stack!'
else:
print 'Removed [', stack.pop(), ']'
#编历栈
def viewstack():
print stack
#CMDs是字典的使用
CMDs = {'u': pushit, 'o': popit, 'v': viewstack}
#pr为提示字符
def showmenu():
pr = """
p(U)sh
p(O)p
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
#先用strip()去掉空格,再把第一个字符转换成小写的
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'uovq':
print 'Invalid option, try again'
else:
break
#CMDs[]根据输入的choice从字典中对应相应的value,比如说输入u,从字典中得到value为pushit,执行pushit()进栈操作
if choice == 'q':
break
CMDs[choice]()
#判断是否是从本文件进入,而不是被调用
if __name__ == '__main__':
showmenu()
用Python实现队列:
#!/usr/bin/env python
queue = []
def enQ():
queue.append(raw_input('Enter new string: ').strip())
#调用list的列表的pop()函数.pop(0)为列表的第一个元素
def deQ():
if len(queue) == 0:
print 'Cannot pop from an empty queue!'
else:
print 'Removed [', queue.pop(0) ,']'
def viewQ():
print queue
CMDs = {'e': enQ, 'd': deQ, 'v': viewQ}
def showmenu():
pr = """
(E)nqueue
(D)equeue
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'devq':
print 'Invalid option, try again'
else:
break
if choice == 'q':
break
CMDs[choice]()
if __name__ == '__main__':
showmenu()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27