京公网安备 11010802034615号
经营许可证编号:京B2-20210330
栈和队列数据结构的基本概念及其相关的Python实现
先来回顾一下栈和队列的基本概念:
相同点:从"数据结构"的角度看,它们都是线性结构,即数据元素之间的关系相同。
不同点:栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表。 队列(Queue)是限定只能在表的一端进行插入和在另一端进行删除操作的线性表。它们是完全不同的数据类型。除了它们各自的基本操作集不同外,主要区别是对插入和删除操作的"限定"。
栈必须按"后进先出"的规则进行操作:比如说,小学老师批改学生的作业,如果不打乱作业本的顺序的话,那么老师批改的第一份作业一定是最后那名同学交的那份作业,如果把所有作业本看作是一个栈中的元素,那么最后一个同学交的作业本就是栈顶元素,而第一个同学交的,也就是最低端的作业本,就是栈底元素,这就是对栈的读取规则。
而队列必须按"先进先出"的规则进行操作:打个比方,一些人去银行办理业务,一定是先去排队的最先得到服务,当然他也是第一个走出银行的(假设这些人都在一个窗口排队)。如果把所有这些等候服务的人看作是队的元素,第一个人就是对头元素,相应的,最后一个人就是队尾元素。这是队的读取规则。
用Python实现栈,这是Python核心编程里的一个例子:
'#!/usr/bin/env python
#定义一个列表来模拟栈
stack = []
#进栈,调用列表的append()函数加到列表的末尾,strip()没有参数是去掉首尾的空格
def pushit():
stack.append(raw_input('Enter new string: ').strip())
#出栈,用到了pop()函数
def popit():
if len(stack) == 0:
print 'Cannot pop from an empty stack!'
else:
print 'Removed [', stack.pop(), ']'
#编历栈
def viewstack():
print stack
#CMDs是字典的使用
CMDs = {'u': pushit, 'o': popit, 'v': viewstack}
#pr为提示字符
def showmenu():
pr = """
p(U)sh
p(O)p
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
#先用strip()去掉空格,再把第一个字符转换成小写的
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'uovq':
print 'Invalid option, try again'
else:
break
#CMDs[]根据输入的choice从字典中对应相应的value,比如说输入u,从字典中得到value为pushit,执行pushit()进栈操作
if choice == 'q':
break
CMDs[choice]()
#判断是否是从本文件进入,而不是被调用
if __name__ == '__main__':
showmenu()
用Python实现队列:
#!/usr/bin/env python
queue = []
def enQ():
queue.append(raw_input('Enter new string: ').strip())
#调用list的列表的pop()函数.pop(0)为列表的第一个元素
def deQ():
if len(queue) == 0:
print 'Cannot pop from an empty queue!'
else:
print 'Removed [', queue.pop(0) ,']'
def viewQ():
print queue
CMDs = {'e': enQ, 'd': deQ, 'v': viewQ}
def showmenu():
pr = """
(E)nqueue
(D)equeue
(V)iew
(Q)uit
Enter choice: """
while True:
while True:
try:
choice = raw_input(pr).strip()[0].lower()
except (EOFError, KeyboardInterrupt, IndexError):
choice = 'q'
print '\nYou picked: [%s]' % choice
if choice not in 'devq':
print 'Invalid option, try again'
else:
break
if choice == 'q':
break
CMDs[choice]()
if __name__ == '__main__':
showmenu()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12