
大数据时代如何探寻其安防商业价值
今日视点 “大数据”是近来一个热点话题,从华尔街到国内资本市场,大数据概念股持续走强。马云在5月10日的卸任演讲中也提道:“很多人还没搞清楚什么是PC互联网,移动互联网来了;我们还没搞清楚移动互联网的时候,大数据又来了。”
什么是“大数据”
大数据(bigdata)又称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理,并整理成为帮助企业经营决策更积极目的的资讯。这里的“大”有几层含义,它可以形容组织的大小,而更重要的是它界定了企业中IT基础设施的规模,业内对大数据应用寄予了无限的期望,商业信息积累的越多价值也越大。因此大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
对于安防行业来讲,在平安城市、智能交通管理、环境保护、危化品运输监控、食品安全监控,或是政府机构、大企业工作场所等的与网络连接的设备系统将最有可能成为最大的数据资源。随着平安城市、智慧城市等工程的推进,监控摄像头已经遍布大街小巷,安防监控对高清化、智能化、网络化、数字化的要求越来越高,数据量自然也不断地迅速增加。
“大数据”带来的存储与管理难题
对于视频监控行业产生的大数据来说,深圳市中瀛鑫科技股份有限公司董事长兼总裁陈文明表示,中瀛鑫在2012年11月底研发出了国内首款1080P高清网络摄像机,速度能够达到每秒60帧,这样的摄像机一个月产生的视频文件就达1.8T,如果摄像头数量较多或多系统集成造成数据类型较多,长时间存储的负担一般企业难以承担。存储压力剧增,一方面对于存储服务器的承载能力要求很高,除了有能力存储大量的数据之外,还要面对更多的数据类型,这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。另一方面对于数据管理尤为重要,数据永远都在增长之中,当有需求去寻找某一段监控片段的时,必须与智能检索与智能分析技术相结合,才能更有效的攫取,成本也会相应提高很多。
“大数据“除了数据规模巨大之外,还意味着拥有庞大的文件数量。那么如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰,基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
寻求安防商业价值
大数据虽然在互联网上是热门的应用之一,但是在安防行业,由于其自身的业务特点和行业内的厂家受研发方向限制,导致“大数据“技术没有在安防行业深入应用,那么逐步挖掘出大数据在安防项目中的应用与发展方向对于大多数安企来说是绝佳的机遇之一。
面对超大规模的监控应用,作为数据的存储系统,在保障数据安全性、可靠性和稳定性的同时,应保证应用性能,如多路视频并发写入、文件检索、视频回放、数据管理等等。大数据的分析与挖掘作为智慧城市与智慧安防之间的共同支撑点之一,建立于大数据深度挖掘基础之上的城市综合性管理平台,才能打破传统行业信息孤岛的壁垒。
在信息时代,数据是一种重要的生产要素,如同资本、劳动力和原材料等其他要素一样,并且作为一种普遍需求,它也不再局限于某些特殊行业的应用。各行业的公司都在收集并利用大量的数据分析结果,尽可能的降低成本,提高产品质量、提高生产效率以及创造新的产品。通过分析直接从产品测试现场收集的数据,不仅能够帮助企业改进设计,还能通过深入分析客户行为,然后对比大量的市场数据,可以超越他的竞争对手。
目前有许多企业认识到大数据分析应用的潜在价值,将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据,综合分析那些来自不同平台下的多种数据对象,包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上,以便创造更多的商业价值。
小结
正如马云所讲的那样,信息化时代的脚步非常快,中国互联网络信息中心(CNNIC)发布《第28次中国互联网络发展状况统计报告》中,截止2012年6月,手机网民在总体网民中的比例达65.5%,成为中国网民的重要组成部分,移动互联网速度非常惊人,那么大数据时代的悄然来临,必然会在各行业内掀起商业风云,安防也不例外。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10