
大数据时代如何探寻其安防商业价值
今日视点 “大数据”是近来一个热点话题,从华尔街到国内资本市场,大数据概念股持续走强。马云在5月10日的卸任演讲中也提道:“很多人还没搞清楚什么是PC互联网,移动互联网来了;我们还没搞清楚移动互联网的时候,大数据又来了。”
什么是“大数据”
大数据(bigdata)又称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理,并整理成为帮助企业经营决策更积极目的的资讯。这里的“大”有几层含义,它可以形容组织的大小,而更重要的是它界定了企业中IT基础设施的规模,业内对大数据应用寄予了无限的期望,商业信息积累的越多价值也越大。因此大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
对于安防行业来讲,在平安城市、智能交通管理、环境保护、危化品运输监控、食品安全监控,或是政府机构、大企业工作场所等的与网络连接的设备系统将最有可能成为最大的数据资源。随着平安城市、智慧城市等工程的推进,监控摄像头已经遍布大街小巷,安防监控对高清化、智能化、网络化、数字化的要求越来越高,数据量自然也不断地迅速增加。
“大数据”带来的存储与管理难题
对于视频监控行业产生的大数据来说,深圳市中瀛鑫科技股份有限公司董事长兼总裁陈文明表示,中瀛鑫在2012年11月底研发出了国内首款1080P高清网络摄像机,速度能够达到每秒60帧,这样的摄像机一个月产生的视频文件就达1.8T,如果摄像头数量较多或多系统集成造成数据类型较多,长时间存储的负担一般企业难以承担。存储压力剧增,一方面对于存储服务器的承载能力要求很高,除了有能力存储大量的数据之外,还要面对更多的数据类型,这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。另一方面对于数据管理尤为重要,数据永远都在增长之中,当有需求去寻找某一段监控片段的时,必须与智能检索与智能分析技术相结合,才能更有效的攫取,成本也会相应提高很多。
“大数据“除了数据规模巨大之外,还意味着拥有庞大的文件数量。那么如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰,基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
寻求安防商业价值
大数据虽然在互联网上是热门的应用之一,但是在安防行业,由于其自身的业务特点和行业内的厂家受研发方向限制,导致“大数据“技术没有在安防行业深入应用,那么逐步挖掘出大数据在安防项目中的应用与发展方向对于大多数安企来说是绝佳的机遇之一。
面对超大规模的监控应用,作为数据的存储系统,在保障数据安全性、可靠性和稳定性的同时,应保证应用性能,如多路视频并发写入、文件检索、视频回放、数据管理等等。大数据的分析与挖掘作为智慧城市与智慧安防之间的共同支撑点之一,建立于大数据深度挖掘基础之上的城市综合性管理平台,才能打破传统行业信息孤岛的壁垒。
在信息时代,数据是一种重要的生产要素,如同资本、劳动力和原材料等其他要素一样,并且作为一种普遍需求,它也不再局限于某些特殊行业的应用。各行业的公司都在收集并利用大量的数据分析结果,尽可能的降低成本,提高产品质量、提高生产效率以及创造新的产品。通过分析直接从产品测试现场收集的数据,不仅能够帮助企业改进设计,还能通过深入分析客户行为,然后对比大量的市场数据,可以超越他的竞争对手。
目前有许多企业认识到大数据分析应用的潜在价值,将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据,综合分析那些来自不同平台下的多种数据对象,包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上,以便创造更多的商业价值。
小结
正如马云所讲的那样,信息化时代的脚步非常快,中国互联网络信息中心(CNNIC)发布《第28次中国互联网络发展状况统计报告》中,截止2012年6月,手机网民在总体网民中的比例达65.5%,成为中国网民的重要组成部分,移动互联网速度非常惊人,那么大数据时代的悄然来临,必然会在各行业内掀起商业风云,安防也不例外。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26