京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分享10个大数据的使用方法
收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户忠诚度并从根本上取得竞争优势:
1. 将网络传输中的数据看做“金矿”并进行挖掘。你的网络中包含了大量其它公司无法从中获益的数据,收割这些数据中的价值是你真正理解用户体验的第一步。
2. 不要总是用假设去了解你的用户,并且知道他们需要什么。拥抱用户,并且切实的了解用户行为,要比去假设要好的多。保持客观,从实际数据中获得见解。
3. 尽可能的收集数据,从而减少盲点。盲点可能导致丢失关键信息,从而得到一个歪曲的用户体验观。确认你收集了一切可以影响到用户体验和行为分析的数据。
4. 对比数据的体积,我们该更看重数量。收集好数据之后,专注于重要的数据来做分析方案。
5. 迅速。用户需求优先级总是在变化的,技术需要迅速的做出分析并做调整。这样才能保证你分析出的不是过时结果,对于随时都在改变的需求,你需要迅速的收集数据并做出响应的处理。
6. 实时的业务运作。这就需求对数据的实时分析并获取见解,从而在情况发生后可以实时的做出调整,从而保证最佳的用户体验及经营结果。
7. 分析不应该给产品系统带来风险,也就是分析永远都不应该给用户体验带来负面的影响。所以尽可能多的捕捉数据,避免盲点才能让分析出的见解不会对业务有负效应。
8. 利用好你数据的每一个字节,聚合数据可能会暗藏关键见解。这些信息片段可能会反应最有价值的见解,可以帮助持续的提升用户体验及经营效果。
9. 着眼大局。捕捉与你站点或者网络应用程序交互的所有数据,不管是来自智能手机、平板或者是电脑。丰富数据,将不同储存形式之间的数据关联起来,确信这些点都被连接了起来。在处理中关联的越早,获得的见解就越完整、精准、及时和有效。
10. 和平台无关,确保你的大数据分析能力不会受到设备的类型限制(笔记本、台式机、智能手机、平板等)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04