
大数据也该找个归宿
男大当婚女大当嫁,数据大了也该找个归宿。有人说大数据是云计算的掌上明珠,堪称位居公主之位。虽说皇帝的女儿不愁嫁,但大数据真不如虚拟化萝莉畅销,大家都在热议大数据,一旦要谈婚论嫁,很多人似乎都患上了结婚恐惧症。别怀疑大数据魅力不足,因为大数据虽然让人浮想联翩,但大家却对大数据的洞房花烛夜充满狐疑。
刚刚过去的2012年真是大数据的花季之年,提亲媒婆似乎踏破了每个数据中心的门槛,大家都对大数据产生了无限的好奇和遐想。
大数据的定义已经不是问题,四个“V”的特征就好比四颗美人痣一样被大家广泛接受,大数据可以产生大价值的论断也逐渐改变着大家的思维,只是这个大价值怎么和自己联系起来呢?很多数据中心还是没有明确的答案,似乎只有互联网、电商等小子正乐享大数据的温柔。大数据到底怎样才能和企业数据中心创造一段美丽的佳话呢?
IDC预测接下去的10年数据量将会成长50倍,而其中非结构化数据将占到90%以上。不仅仅是数据量的增加让我们面临存储、检索等一系列的挑战,非结构化数据也让传统的RDBMS束手无策。同时,数据的生命周期也正发生着革命性变化,正在从传统的CRUD(Create-Read-Update-Delete)走向CRAP(Create-Read-Append-Process),大量的数据会从产生就不断积聚、添加到处理,从而大数据在任何一个行业都会急剧扩散、蔓延,不以我们的意志为转移。当然,对数据的处理速度也提出了更高要求,传统的商务智能(BI)可能只要每周、每月甚至每年出几次报告,而现在日益加剧的商业竞争让每个企业都希望能随时看到报表和结果数据,这真是一个既要马儿跑得快又要马儿不吃草或少吃草的时代。这就是快数据(FastData),是大数据的贴身丫鬟,考虑迎娶大数据可不能忘记快数据。
云计算让深藏互联网闺房的大数据第一次走进公众的视野,但很多企业数据中心却被互联网极客的某些论断吓退,比如前些日子微博上有人热炒:一个工厂过去十年的数据可能都比不上淘宝一天的数据量,所以制造业根本没有大数据。到底大数据是谁的菜呢?难道和我们很多企业数据中心都没有缘分吗?其实,大数据就在我们身边,我们发邮件、购物、上网搜索资料等的行为记录就是大数据;工厂机器的GPS数据、维修记录等也是大数据,产品销售记录、客户行为习惯资料等也是大数据;矿山、气象等资料也是大数据;平安城市物联网更是大数据。实际大数据无处不在,有人说软件正在吞噬世界,我想说数据也在淹没世界,每个数据中心都应该考虑好迎娶大数据。
Unix服务器、企业级存储、网络、安全、RDBMS是我们常用的五件套来应对数据的存储、管理等挑战,但今天传统五件套已经没法满足大数据的需要,不是大数据太骄奢,而是大数据真需要新嫁妆才能成为巧媳妇,那迎娶大数据需要什么新嫁妆呢?
首先,Unix服务器/企业级存储都将随云而去。Unix服务器/企业级存储曾是任何企业应用的基础平台,但随着互联网之风的盛行,Unix服务器/企业级存储高高在上的价格和孤芳自赏的品行越来越不能为大家接受,x86服务器/廉价云存储开始大行其道,成为云端应用的基石,无论是大数据还是快数据,都是x86平台/廉价云存储的粉丝,这个嫁妆绝对不能少;第二,网络和安全也随云而新,软件定义的网络SDN这股清风吹醒了传统的网络界,云安全也提上了任何云项目的重要议程。没有宽阔的胸堂(SDN)和坚强的臂膀,怎么能呵护大数据这个娇娘?因此,SDN和云安全也不能少;最后,RDBMS老骥伏枥不能相忘。今天确实仍是结构化数据处理的中坚,但要降服云端挑战,即使是老将,也要配备新的盔甲,数据库即服务和内存数据库将成为其新战袍。
另外,非结构化的领地要交给Hadoop等新一代的战将来打理,还要有新的分析工具配备上才能打赢现代化的战争,保护好数据中心的新媳妇。当然,新的分析工具要根据不同的需求进行定制开发,这也为国内的IT公司提供了一片新的战场。
别让大数据成为剩数据,勇敢挺起你的胸膛,对大数据大胆说出你的爱,相信大数据定将迫不及待地投入你的怀抱,你也将从此享受大数据的温柔梦乡。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10