京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据也该找个归宿
男大当婚女大当嫁,数据大了也该找个归宿。有人说大数据是云计算的掌上明珠,堪称位居公主之位。虽说皇帝的女儿不愁嫁,但大数据真不如虚拟化萝莉畅销,大家都在热议大数据,一旦要谈婚论嫁,很多人似乎都患上了结婚恐惧症。别怀疑大数据魅力不足,因为大数据虽然让人浮想联翩,但大家却对大数据的洞房花烛夜充满狐疑。
刚刚过去的2012年真是大数据的花季之年,提亲媒婆似乎踏破了每个数据中心的门槛,大家都对大数据产生了无限的好奇和遐想。
大数据的定义已经不是问题,四个“V”的特征就好比四颗美人痣一样被大家广泛接受,大数据可以产生大价值的论断也逐渐改变着大家的思维,只是这个大价值怎么和自己联系起来呢?很多数据中心还是没有明确的答案,似乎只有互联网、电商等小子正乐享大数据的温柔。大数据到底怎样才能和企业数据中心创造一段美丽的佳话呢?
IDC预测接下去的10年数据量将会成长50倍,而其中非结构化数据将占到90%以上。不仅仅是数据量的增加让我们面临存储、检索等一系列的挑战,非结构化数据也让传统的RDBMS束手无策。同时,数据的生命周期也正发生着革命性变化,正在从传统的CRUD(Create-Read-Update-Delete)走向CRAP(Create-Read-Append-Process),大量的数据会从产生就不断积聚、添加到处理,从而大数据在任何一个行业都会急剧扩散、蔓延,不以我们的意志为转移。当然,对数据的处理速度也提出了更高要求,传统的商务智能(BI)可能只要每周、每月甚至每年出几次报告,而现在日益加剧的商业竞争让每个企业都希望能随时看到报表和结果数据,这真是一个既要马儿跑得快又要马儿不吃草或少吃草的时代。这就是快数据(FastData),是大数据的贴身丫鬟,考虑迎娶大数据可不能忘记快数据。
云计算让深藏互联网闺房的大数据第一次走进公众的视野,但很多企业数据中心却被互联网极客的某些论断吓退,比如前些日子微博上有人热炒:一个工厂过去十年的数据可能都比不上淘宝一天的数据量,所以制造业根本没有大数据。到底大数据是谁的菜呢?难道和我们很多企业数据中心都没有缘分吗?其实,大数据就在我们身边,我们发邮件、购物、上网搜索资料等的行为记录就是大数据;工厂机器的GPS数据、维修记录等也是大数据,产品销售记录、客户行为习惯资料等也是大数据;矿山、气象等资料也是大数据;平安城市物联网更是大数据。实际大数据无处不在,有人说软件正在吞噬世界,我想说数据也在淹没世界,每个数据中心都应该考虑好迎娶大数据。
Unix服务器、企业级存储、网络、安全、RDBMS是我们常用的五件套来应对数据的存储、管理等挑战,但今天传统五件套已经没法满足大数据的需要,不是大数据太骄奢,而是大数据真需要新嫁妆才能成为巧媳妇,那迎娶大数据需要什么新嫁妆呢?
首先,Unix服务器/企业级存储都将随云而去。Unix服务器/企业级存储曾是任何企业应用的基础平台,但随着互联网之风的盛行,Unix服务器/企业级存储高高在上的价格和孤芳自赏的品行越来越不能为大家接受,x86服务器/廉价云存储开始大行其道,成为云端应用的基石,无论是大数据还是快数据,都是x86平台/廉价云存储的粉丝,这个嫁妆绝对不能少;第二,网络和安全也随云而新,软件定义的网络SDN这股清风吹醒了传统的网络界,云安全也提上了任何云项目的重要议程。没有宽阔的胸堂(SDN)和坚强的臂膀,怎么能呵护大数据这个娇娘?因此,SDN和云安全也不能少;最后,RDBMS老骥伏枥不能相忘。今天确实仍是结构化数据处理的中坚,但要降服云端挑战,即使是老将,也要配备新的盔甲,数据库即服务和内存数据库将成为其新战袍。
另外,非结构化的领地要交给Hadoop等新一代的战将来打理,还要有新的分析工具配备上才能打赢现代化的战争,保护好数据中心的新媳妇。当然,新的分析工具要根据不同的需求进行定制开发,这也为国内的IT公司提供了一片新的战场。
别让大数据成为剩数据,勇敢挺起你的胸膛,对大数据大胆说出你的爱,相信大数据定将迫不及待地投入你的怀抱,你也将从此享受大数据的温柔梦乡。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12