
Python增量循环删除MySQL表数据的方法
有一业务数据库,使用MySQL 5.5版本,每天会写入大量数据,需要不定期将多表中“指定时期前“的数据进行删除,在SQL SERVER中很容易实现,写几个WHILE循环就搞定,虽然MySQL中也存在类似功能,怎奈自己不精通,于是采用Python来实现
话不多少,上脚本:
# coding: utf-8
import MySQLdb
import time
# delete config
DELETE_DATETIME = '2016-08-31 23:59:59'
DELETE_ROWS = 10000
EXEC_DETAIL_FILE = 'exec_detail.txt'
SLEEP_SECOND_PER_BATCH = 0.5
DATETIME_FORMAT = '%Y-%m-%d %X'
# MySQL Connection Config
Default_MySQL_Host = 'localhost'
Default_MySQL_Port = 3358
Default_MySQL_User = "root"
Default_MySQL_Password = 'roo@01239876'
Default_MySQL_Charset = "utf8"
Default_MySQL_Connect_TimeOut = 120
Default_Database_Name = 'testdb001'
def get_time_string(dt_time):
"""
获取指定格式的时间字符串
:param dt_time: 要转换成字符串的时间
:return: 返回指定格式的字符串
"""
global DATETIME_FORMAT
return time.strftime(DATETIME_FORMAT, dt_time)
def print_info(message):
"""
将message输出到控制台,并将message写入到日志文件
:param message: 要输出的字符串
:return: 无返回
"""
print(message)
global EXEC_DETAIL_FILE
new_message = get_time_string(time.localtime()) + chr(13) + str(message)
write_file(EXEC_DETAIL_FILE, new_message)
def write_file(file_path, message):
"""
将传入的message追加写入到file_path指定的文件中
请先创建文件所在的目录
:param file_path: 要写入的文件路径
:param message: 要写入的信息
:return:
"""
file_handle = open(file_path, 'a')
file_handle.writelines(message)
# 追加一个换行以方便浏览
file_handle.writelines(chr(13))
file_handle.close()
def get_mysql_connection():
"""
根据默认配置返回数据库连接
:return: 数据库连接
"""
conn = MySQLdb.connect(
host=Default_MySQL_Host,
port=Default_MySQL_Port,
user=Default_MySQL_User,
passwd=Default_MySQL_Password,
connect_timeout=Default_MySQL_Connect_TimeOut,
charset=Default_MySQL_Charset,
db=Default_Database_Name
)
return conn
def mysql_exec(sql_script, sql_param=None):
"""
执行传入的脚本,返回影响行数
:param sql_script:
:param sql_param:
:return: 脚本最后一条语句执行影响行数
"""
try:
conn = get_mysql_connection()
print_info("在服务器{0}上执行脚本:{1}".format(
conn.get_host_info(), sql_script))
cursor = conn.cursor()
if sql_param is not None:
cursor.execute(sql_script, sql_param)
row_count = cursor.rowcount
else:
cursor.execute(sql_script)
row_count = cursor.rowcount
conn.commit()
cursor.close()
conn.close()
except Exception, e:
print_info("execute exception:" + str(e))
row_count = 0
return row_count
def mysql_query(sql_script, sql_param=None):
"""
执行传入的SQL脚本,并返回查询结果
:param sql_script:
:param sql_param:
:return: 返回SQL查询结果
"""
try:
conn = get_mysql_connection()
print_info("在服务器{0}上执行脚本:{1}".format(
conn.get_host_info(), sql_script))
cursor = conn.cursor()
if sql_param != '':
cursor.execute(sql_script, sql_param)
else:
cursor.execute(sql_script)
exec_result = cursor.fetchall()
cursor.close()
conn.close()
return exec_result
except Exception, e:
print_info("execute exception:" + str(e))
def get_id_range(table_name):
"""
按照传入的表获取要删除数据最大ID、最小ID、删除总行数
:param table_name: 要删除的表
:return: 返回要删除数据最大ID、最小ID、删除总行数
"""
global DELETE_DATETIME
sql_script = """
SELECT
MAX(ID) AS MAX_ID,
MIN(ID) AS MIN_ID,
COUNT(1) AS Total_Count
FROM {0}
WHERE create_time <='{1}';
""".format(table_name, DELETE_DATETIME)
query_result = mysql_query(sql_script=sql_script, sql_param=None)
max_id, min_id, total_count = query_result[0]
# 此处有一坑,可能出现total_count不为0 但是max_id 和min_id 为None的情况
# 因此判断max_id和min_id 是否为NULL
if (max_id is None) or (min_id is None):
max_id, min_id, total_count = 0, 0, 0
return max_id, min_id, total_count
def delete_data(table_name):
max_id, min_id, total_count = get_id_range(table_name)
temp_id = min_id
while temp_id <= max_id:
sql_script = """
DELETE FROM {0}
WHERE id <= {1}
and id >= {2}
AND create_time <='{3}';
""".format(table_name, temp_id + DELETE_ROWS, temp_id, DELETE_DATETIME)
temp_id += DELETE_ROWS
print(sql_script)
row_count = mysql_exec(sql_script)
print_info("影响行数:{0}".format(row_count))
current_percent = (temp_id - min_id) * 1.0 / (max_id - min_id)
print_info("当前进度{0}/{1},剩余{2},进度为{3}%".format(temp_id, max_id, max_id - temp_id, "%.2f" % current_percent))
time.sleep(SLEEP_SECOND_PER_BATCH)
print_info("当前表{0}已无需要删除的数据".format(table_name))
delete_data('TB001')
delete_data('TB002')
delete_data('TB003')
执行效果:
实现原理:
由于表存在自增ID,于是给我们增量循环删除的机会,查找出满足删除条件的最大值ID和最小值ID,然后按ID 依次递增,每次小范围内(如10000条)进行删除。
实现优点:
实现“小斧子砍大柴”的效果,事务小,对线上影响较小,打印出当前处理到的“ID”,可以随时关闭,稍微修改下代码便可以从该ID开始,方便。
实现不足:
为防止主从延迟太高,采用每次删除SLEEP1秒的方式,相对比较糙,最好的方式应该是周期扫描这条复制链路,根据延迟调整SLEEP的周期,反正都脚本化,再智能化点又何妨!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27